vit-lr-0.0001 / README.md
sharren's picture
Update README.md
7232d9c verified
metadata
license: apache-2.0
base_model: google/vit-base-patch16-224
tags:
  - image-classification
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: vit-lr-0.0001
    results: []

vit-lr-0.0001

This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4778
  • Accuracy: 0.8311
  • Precision: 0.8433
  • Recall: 0.8311
  • F1: 0.8269

Training procedure

Early stopping is employed with a patience of 10 and validation loss as the stopping criteria.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 100
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6718 1.0 321 0.4934 0.8242 0.8254 0.8242 0.8163
0.4045 2.0 642 0.4778 0.8311 0.8433 0.8311 0.8269
0.2419 3.0 963 0.5133 0.8405 0.8525 0.8405 0.8410
0.1267 4.0 1284 0.6154 0.8495 0.8491 0.8495 0.8448
0.0733 5.0 1605 0.7845 0.8422 0.8421 0.8422 0.8361
0.0446 6.0 1926 0.8767 0.8471 0.8407 0.8471 0.8408
0.0523 7.0 2247 0.8674 0.8450 0.8492 0.8450 0.8407
0.0388 8.0 2568 0.9754 0.8398 0.8566 0.8398 0.8387
0.0402 9.0 2889 0.9370 0.8492 0.8547 0.8492 0.8461
0.0283 10.0 3210 0.9218 0.8509 0.8496 0.8509 0.8483
0.0451 11.0 3531 0.9872 0.8474 0.8400 0.8474 0.8401
0.0549 12.0 3852 1.0203 0.8457 0.8488 0.8457 0.8416

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2