--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - image-classification - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-lr-0.0001 results: [] --- # vit-lr-0.0001 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the skin-cancer dataset. It achieves the following results on the evaluation set: - Loss: 0.4778 - Accuracy: 0.8311 - Precision: 0.8433 - Recall: 0.8311 - F1: 0.8269 ## Training procedure Early stopping is employed with a patience of 10 and validation loss as the stopping criteria. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.6718 | 1.0 | 321 | 0.4934 | 0.8242 | 0.8254 | 0.8242 | 0.8163 | | 0.4045 | 2.0 | 642 | 0.4778 | 0.8311 | 0.8433 | 0.8311 | 0.8269 | | 0.2419 | 3.0 | 963 | 0.5133 | 0.8405 | 0.8525 | 0.8405 | 0.8410 | | 0.1267 | 4.0 | 1284 | 0.6154 | 0.8495 | 0.8491 | 0.8495 | 0.8448 | | 0.0733 | 5.0 | 1605 | 0.7845 | 0.8422 | 0.8421 | 0.8422 | 0.8361 | | 0.0446 | 6.0 | 1926 | 0.8767 | 0.8471 | 0.8407 | 0.8471 | 0.8408 | | 0.0523 | 7.0 | 2247 | 0.8674 | 0.8450 | 0.8492 | 0.8450 | 0.8407 | | 0.0388 | 8.0 | 2568 | 0.9754 | 0.8398 | 0.8566 | 0.8398 | 0.8387 | | 0.0402 | 9.0 | 2889 | 0.9370 | 0.8492 | 0.8547 | 0.8492 | 0.8461 | | 0.0283 | 10.0 | 3210 | 0.9218 | 0.8509 | 0.8496 | 0.8509 | 0.8483 | | 0.0451 | 11.0 | 3531 | 0.9872 | 0.8474 | 0.8400 | 0.8474 | 0.8401 | | 0.0549 | 12.0 | 3852 | 1.0203 | 0.8457 | 0.8488 | 0.8457 | 0.8416 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2