vit-lr-0.0001
This model is a fine-tuned version of google/vit-base-patch16-224 on the skin-cancer dataset. It achieves the following results on the evaluation set:
- Loss: 0.4778
- Accuracy: 0.8311
- Precision: 0.8433
- Recall: 0.8311
- F1: 0.8269
Training procedure
Early stopping is employed with a patience of 10 and validation loss as the stopping criteria.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.6718 | 1.0 | 321 | 0.4934 | 0.8242 | 0.8254 | 0.8242 | 0.8163 |
0.4045 | 2.0 | 642 | 0.4778 | 0.8311 | 0.8433 | 0.8311 | 0.8269 |
0.2419 | 3.0 | 963 | 0.5133 | 0.8405 | 0.8525 | 0.8405 | 0.8410 |
0.1267 | 4.0 | 1284 | 0.6154 | 0.8495 | 0.8491 | 0.8495 | 0.8448 |
0.0733 | 5.0 | 1605 | 0.7845 | 0.8422 | 0.8421 | 0.8422 | 0.8361 |
0.0446 | 6.0 | 1926 | 0.8767 | 0.8471 | 0.8407 | 0.8471 | 0.8408 |
0.0523 | 7.0 | 2247 | 0.8674 | 0.8450 | 0.8492 | 0.8450 | 0.8407 |
0.0388 | 8.0 | 2568 | 0.9754 | 0.8398 | 0.8566 | 0.8398 | 0.8387 |
0.0402 | 9.0 | 2889 | 0.9370 | 0.8492 | 0.8547 | 0.8492 | 0.8461 |
0.0283 | 10.0 | 3210 | 0.9218 | 0.8509 | 0.8496 | 0.8509 | 0.8483 |
0.0451 | 11.0 | 3531 | 0.9872 | 0.8474 | 0.8400 | 0.8474 | 0.8401 |
0.0549 | 12.0 | 3852 | 1.0203 | 0.8457 | 0.8488 | 0.8457 | 0.8416 |
Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 77
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for sharren/vit-lr-0.0001
Base model
google/vit-base-patch16-224