metadata
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: A person dressed in red and black outside a cracked wall.
sentences:
- A person in red and black near a wall.
- Two women are in a car with a man.
- a baby cries while getting their diaper changed
- source_sentence: >-
A man with shoulder length dark hair sits near the rocks of a waterfront
while holding a cigarette in his right hand.
sentences:
- A man holding a cigarette.
- a pair of fencers practice together
- Four skaters race each other.
- source_sentence: A man is reading a newspaper in a car dealership.
sentences:
- A man is at a car dealership.
- Guys wearing white shirts play around by the park.
- People are outside.
- source_sentence: A woman in black, seen from behind, sits next to a body of water.
sentences:
- A woman sits outside.
- There are families playing in a fountain
- A player is hoping to score a run.
- source_sentence: >-
AN older woman appears to read from a children's book in an indoor
setting, while a seated gentleman in a service uniform looks on.
sentences:
- a man is sitting in a lawn chair
- A woman reads from a book while a man watches.
- Others look while two men carve a babecued hog
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9998531139835488
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: -0.043851763010025024
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9999265515975029
name: Cosine F1
- type: cosine_f1_threshold
value: -0.043851763010025024
name: Cosine F1 Threshold
- type: cosine_precision
value: 1
name: Cosine Precision
- type: cosine_recall
value: 0.9998531139835488
name: Cosine Recall
- type: cosine_ap
value: 1
name: Cosine Ap
- type: cosine_mcc
value: 0
name: Cosine Mcc
- type: cosine_accuracy
value: 0.9998536085492608
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.09460622072219849
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9999267989166241
name: Cosine F1
- type: cosine_f1_threshold
value: 0.09460622072219849
name: Cosine F1 Threshold
- type: cosine_precision
value: 1
name: Cosine Precision
- type: cosine_recall
value: 0.9998536085492608
name: Cosine Recall
- type: cosine_ap
value: 1
name: Cosine Ap
- type: cosine_mcc
value: 0
name: Cosine Mcc
SentenceTransformer based on microsoft/mpnet-base
This is a sentence-transformers model finetuned from microsoft/mpnet-base on the all-nli dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: microsoft/mpnet-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mrunali496/mpnet-base-all-nli-pair")
# Run inference
sentences = [
"AN older woman appears to read from a children's book in an indoor setting, while a seated gentleman in a service uniform looks on.",
'A woman reads from a book while a man watches.',
'Others look while two men carve a babecued hog',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9999 |
cosine_accuracy_threshold | -0.0439 |
cosine_f1 | 0.9999 |
cosine_f1_threshold | -0.0439 |
cosine_precision | 1.0 |
cosine_recall | 0.9999 |
cosine_ap | 1.0 |
cosine_mcc | 0.0 |
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9999 |
cosine_accuracy_threshold | 0.0946 |
cosine_f1 | 0.9999 |
cosine_f1_threshold | 0.0946 |
cosine_precision | 1.0 |
cosine_recall | 0.9999 |
cosine_ap | 1.0 |
cosine_mcc | 0.0 |
Training Details
Training Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 314,315 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 17.03 tokens
- max: 64 tokens
- min: 4 tokens
- mean: 9.62 tokens
- max: 31 tokens
- Samples:
anchor positive A person on a horse jumps over a broken down airplane.
A person is outdoors, on a horse.
Children smiling and waving at camera
There are children present
A boy is jumping on skateboard in the middle of a red bridge.
The boy does a skateboarding trick.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
all-nli
- Dataset: all-nli at d482672
- Size: 6,808 evaluation samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 6 tokens
- mean: 18.01 tokens
- max: 63 tokens
- min: 4 tokens
- mean: 9.8 tokens
- max: 29 tokens
- Samples:
anchor positive Two women are embracing while holding to go packages.
Two woman are holding packages.
Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
Two kids in numbered jerseys wash their hands.
A man selling donuts to a customer during a world exhibition event held in the city of Angeles
A man selling donuts to a customer.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepswarmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | Validation Loss | cosine_ap |
---|---|---|---|---|
-1 | -1 | - | - | 1.0 |
0.008 | 100 | 2.0126 | 1.2036 | 1.0 |
0.016 | 200 | 1.0366 | 0.3276 | 1.0 |
0.024 | 300 | 0.4426 | 0.1492 | 1.0 |
0.032 | 400 | 0.2518 | 0.1048 | 1.0 |
0.04 | 500 | 0.2026 | 0.0962 | 1.0 |
0.048 | 600 | 0.1818 | 0.0821 | 1.0 |
0.056 | 700 | 0.1797 | 0.0816 | 1.0 |
0.064 | 800 | 0.1845 | 0.0659 | 1.0 |
0.072 | 900 | 0.1474 | 0.0675 | 1.0 |
0.08 | 1000 | 0.1648 | 0.0750 | 1.0 |
-1 | -1 | - | - | 1.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 3.4.1
- Transformers: 4.41.1
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}