mrunali496 commited on
Commit
56a3e7c
·
verified ·
1 Parent(s): 152616f

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,497 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:314315
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: microsoft/mpnet-base
12
+ widget:
13
+ - source_sentence: A person dressed in red and black outside a cracked wall.
14
+ sentences:
15
+ - A person in red and black near a wall.
16
+ - Two women are in a car with a man.
17
+ - a baby cries while getting their diaper changed
18
+ - source_sentence: A man with shoulder length dark hair sits near the rocks of a waterfront
19
+ while holding a cigarette in his right hand.
20
+ sentences:
21
+ - A man holding a cigarette.
22
+ - a pair of fencers practice together
23
+ - Four skaters race each other.
24
+ - source_sentence: A man is reading a newspaper in a car dealership.
25
+ sentences:
26
+ - A man is at a car dealership.
27
+ - Guys wearing white shirts play around by the park.
28
+ - People are outside.
29
+ - source_sentence: A woman in black, seen from behind, sits next to a body of water.
30
+ sentences:
31
+ - A woman sits outside.
32
+ - There are families playing in a fountain
33
+ - A player is hoping to score a run.
34
+ - source_sentence: AN older woman appears to read from a children's book in an indoor
35
+ setting, while a seated gentleman in a service uniform looks on.
36
+ sentences:
37
+ - a man is sitting in a lawn chair
38
+ - A woman reads from a book while a man watches.
39
+ - Others look while two men carve a babecued hog
40
+ datasets:
41
+ - sentence-transformers/all-nli
42
+ pipeline_tag: sentence-similarity
43
+ library_name: sentence-transformers
44
+ metrics:
45
+ - cosine_accuracy
46
+ - cosine_accuracy_threshold
47
+ - cosine_f1
48
+ - cosine_f1_threshold
49
+ - cosine_precision
50
+ - cosine_recall
51
+ - cosine_ap
52
+ - cosine_mcc
53
+ model-index:
54
+ - name: SentenceTransformer based on microsoft/mpnet-base
55
+ results:
56
+ - task:
57
+ type: binary-classification
58
+ name: Binary Classification
59
+ dataset:
60
+ name: Unknown
61
+ type: unknown
62
+ metrics:
63
+ - type: cosine_accuracy
64
+ value: 0.9998531139835488
65
+ name: Cosine Accuracy
66
+ - type: cosine_accuracy_threshold
67
+ value: -0.043851763010025024
68
+ name: Cosine Accuracy Threshold
69
+ - type: cosine_f1
70
+ value: 0.9999265515975029
71
+ name: Cosine F1
72
+ - type: cosine_f1_threshold
73
+ value: -0.043851763010025024
74
+ name: Cosine F1 Threshold
75
+ - type: cosine_precision
76
+ value: 1.0
77
+ name: Cosine Precision
78
+ - type: cosine_recall
79
+ value: 0.9998531139835488
80
+ name: Cosine Recall
81
+ - type: cosine_ap
82
+ value: 1.0
83
+ name: Cosine Ap
84
+ - type: cosine_mcc
85
+ value: 0.0
86
+ name: Cosine Mcc
87
+ - type: cosine_accuracy
88
+ value: 0.9998536085492608
89
+ name: Cosine Accuracy
90
+ - type: cosine_accuracy_threshold
91
+ value: 0.09460622072219849
92
+ name: Cosine Accuracy Threshold
93
+ - type: cosine_f1
94
+ value: 0.9999267989166241
95
+ name: Cosine F1
96
+ - type: cosine_f1_threshold
97
+ value: 0.09460622072219849
98
+ name: Cosine F1 Threshold
99
+ - type: cosine_precision
100
+ value: 1.0
101
+ name: Cosine Precision
102
+ - type: cosine_recall
103
+ value: 0.9998536085492608
104
+ name: Cosine Recall
105
+ - type: cosine_ap
106
+ value: 1.0
107
+ name: Cosine Ap
108
+ - type: cosine_mcc
109
+ value: 0.0
110
+ name: Cosine Mcc
111
+ ---
112
+
113
+ # SentenceTransformer based on microsoft/mpnet-base
114
+
115
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
116
+
117
+ ## Model Details
118
+
119
+ ### Model Description
120
+ - **Model Type:** Sentence Transformer
121
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
122
+ - **Maximum Sequence Length:** 512 tokens
123
+ - **Output Dimensionality:** 768 dimensions
124
+ - **Similarity Function:** Cosine Similarity
125
+ - **Training Dataset:**
126
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
127
+ - **Language:** en
128
+ <!-- - **License:** Unknown -->
129
+
130
+ ### Model Sources
131
+
132
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
133
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
134
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
135
+
136
+ ### Full Model Architecture
137
+
138
+ ```
139
+ SentenceTransformer(
140
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
141
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
142
+ )
143
+ ```
144
+
145
+ ## Usage
146
+
147
+ ### Direct Usage (Sentence Transformers)
148
+
149
+ First install the Sentence Transformers library:
150
+
151
+ ```bash
152
+ pip install -U sentence-transformers
153
+ ```
154
+
155
+ Then you can load this model and run inference.
156
+ ```python
157
+ from sentence_transformers import SentenceTransformer
158
+
159
+ # Download from the 🤗 Hub
160
+ model = SentenceTransformer("mrunali496/mpnet-base-all-nli-pair")
161
+ # Run inference
162
+ sentences = [
163
+ "AN older woman appears to read from a children's book in an indoor setting, while a seated gentleman in a service uniform looks on.",
164
+ 'A woman reads from a book while a man watches.',
165
+ 'Others look while two men carve a babecued hog',
166
+ ]
167
+ embeddings = model.encode(sentences)
168
+ print(embeddings.shape)
169
+ # [3, 768]
170
+
171
+ # Get the similarity scores for the embeddings
172
+ similarities = model.similarity(embeddings, embeddings)
173
+ print(similarities.shape)
174
+ # [3, 3]
175
+ ```
176
+
177
+ <!--
178
+ ### Direct Usage (Transformers)
179
+
180
+ <details><summary>Click to see the direct usage in Transformers</summary>
181
+
182
+ </details>
183
+ -->
184
+
185
+ <!--
186
+ ### Downstream Usage (Sentence Transformers)
187
+
188
+ You can finetune this model on your own dataset.
189
+
190
+ <details><summary>Click to expand</summary>
191
+
192
+ </details>
193
+ -->
194
+
195
+ <!--
196
+ ### Out-of-Scope Use
197
+
198
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
199
+ -->
200
+
201
+ ## Evaluation
202
+
203
+ ### Metrics
204
+
205
+ #### Binary Classification
206
+
207
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
208
+
209
+ | Metric | Value |
210
+ |:--------------------------|:--------|
211
+ | cosine_accuracy | 0.9999 |
212
+ | cosine_accuracy_threshold | -0.0439 |
213
+ | cosine_f1 | 0.9999 |
214
+ | cosine_f1_threshold | -0.0439 |
215
+ | cosine_precision | 1.0 |
216
+ | cosine_recall | 0.9999 |
217
+ | **cosine_ap** | **1.0** |
218
+ | cosine_mcc | 0.0 |
219
+
220
+ #### Binary Classification
221
+
222
+ * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
223
+
224
+ | Metric | Value |
225
+ |:--------------------------|:--------|
226
+ | cosine_accuracy | 0.9999 |
227
+ | cosine_accuracy_threshold | 0.0946 |
228
+ | cosine_f1 | 0.9999 |
229
+ | cosine_f1_threshold | 0.0946 |
230
+ | cosine_precision | 1.0 |
231
+ | cosine_recall | 0.9999 |
232
+ | **cosine_ap** | **1.0** |
233
+ | cosine_mcc | 0.0 |
234
+
235
+ <!--
236
+ ## Bias, Risks and Limitations
237
+
238
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
239
+ -->
240
+
241
+ <!--
242
+ ### Recommendations
243
+
244
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
245
+ -->
246
+
247
+ ## Training Details
248
+
249
+ ### Training Dataset
250
+
251
+ #### all-nli
252
+
253
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
254
+ * Size: 314,315 training samples
255
+ * Columns: <code>anchor</code> and <code>positive</code>
256
+ * Approximate statistics based on the first 1000 samples:
257
+ | | anchor | positive |
258
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
259
+ | type | string | string |
260
+ | details | <ul><li>min: 5 tokens</li><li>mean: 17.03 tokens</li><li>max: 64 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.62 tokens</li><li>max: 31 tokens</li></ul> |
261
+ * Samples:
262
+ | anchor | positive |
263
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|
264
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> |
265
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> |
266
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> |
267
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
268
+ ```json
269
+ {
270
+ "scale": 20.0,
271
+ "similarity_fct": "cos_sim"
272
+ }
273
+ ```
274
+
275
+ ### Evaluation Dataset
276
+
277
+ #### all-nli
278
+
279
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
280
+ * Size: 6,808 evaluation samples
281
+ * Columns: <code>anchor</code> and <code>positive</code>
282
+ * Approximate statistics based on the first 1000 samples:
283
+ | | anchor | positive |
284
+ |:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
285
+ | type | string | string |
286
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.01 tokens</li><li>max: 63 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.8 tokens</li><li>max: 29 tokens</li></ul> |
287
+ * Samples:
288
+ | anchor | positive |
289
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------|
290
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> |
291
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>Two kids in numbered jerseys wash their hands.</code> |
292
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>A man selling donuts to a customer.</code> |
293
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
294
+ ```json
295
+ {
296
+ "scale": 20.0,
297
+ "similarity_fct": "cos_sim"
298
+ }
299
+ ```
300
+
301
+ ### Training Hyperparameters
302
+ #### Non-Default Hyperparameters
303
+
304
+ - `eval_strategy`: steps
305
+ - `warmup_ratio`: 0.1
306
+ - `fp16`: True
307
+ - `load_best_model_at_end`: True
308
+ - `batch_sampler`: no_duplicates
309
+
310
+ #### All Hyperparameters
311
+ <details><summary>Click to expand</summary>
312
+
313
+ - `overwrite_output_dir`: False
314
+ - `do_predict`: False
315
+ - `eval_strategy`: steps
316
+ - `prediction_loss_only`: True
317
+ - `per_device_train_batch_size`: 8
318
+ - `per_device_eval_batch_size`: 8
319
+ - `per_gpu_train_batch_size`: None
320
+ - `per_gpu_eval_batch_size`: None
321
+ - `gradient_accumulation_steps`: 1
322
+ - `eval_accumulation_steps`: None
323
+ - `learning_rate`: 5e-05
324
+ - `weight_decay`: 0.0
325
+ - `adam_beta1`: 0.9
326
+ - `adam_beta2`: 0.999
327
+ - `adam_epsilon`: 1e-08
328
+ - `max_grad_norm`: 1.0
329
+ - `num_train_epochs`: 3
330
+ - `max_steps`: -1
331
+ - `lr_scheduler_type`: linear
332
+ - `lr_scheduler_kwargs`: {}
333
+ - `warmup_ratio`: 0.1
334
+ - `warmup_steps`: 0
335
+ - `log_level`: passive
336
+ - `log_level_replica`: warning
337
+ - `log_on_each_node`: True
338
+ - `logging_nan_inf_filter`: True
339
+ - `save_safetensors`: True
340
+ - `save_on_each_node`: False
341
+ - `save_only_model`: False
342
+ - `restore_callback_states_from_checkpoint`: False
343
+ - `no_cuda`: False
344
+ - `use_cpu`: False
345
+ - `use_mps_device`: False
346
+ - `seed`: 42
347
+ - `data_seed`: None
348
+ - `jit_mode_eval`: False
349
+ - `use_ipex`: False
350
+ - `bf16`: False
351
+ - `fp16`: True
352
+ - `fp16_opt_level`: O1
353
+ - `half_precision_backend`: auto
354
+ - `bf16_full_eval`: False
355
+ - `fp16_full_eval`: False
356
+ - `tf32`: None
357
+ - `local_rank`: 0
358
+ - `ddp_backend`: None
359
+ - `tpu_num_cores`: None
360
+ - `tpu_metrics_debug`: False
361
+ - `debug`: []
362
+ - `dataloader_drop_last`: False
363
+ - `dataloader_num_workers`: 0
364
+ - `dataloader_prefetch_factor`: None
365
+ - `past_index`: -1
366
+ - `disable_tqdm`: False
367
+ - `remove_unused_columns`: True
368
+ - `label_names`: None
369
+ - `load_best_model_at_end`: True
370
+ - `ignore_data_skip`: False
371
+ - `fsdp`: []
372
+ - `fsdp_min_num_params`: 0
373
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
374
+ - `fsdp_transformer_layer_cls_to_wrap`: None
375
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
376
+ - `deepspeed`: None
377
+ - `label_smoothing_factor`: 0.0
378
+ - `optim`: adamw_torch
379
+ - `optim_args`: None
380
+ - `adafactor`: False
381
+ - `group_by_length`: False
382
+ - `length_column_name`: length
383
+ - `ddp_find_unused_parameters`: None
384
+ - `ddp_bucket_cap_mb`: None
385
+ - `ddp_broadcast_buffers`: False
386
+ - `dataloader_pin_memory`: True
387
+ - `dataloader_persistent_workers`: False
388
+ - `skip_memory_metrics`: True
389
+ - `use_legacy_prediction_loop`: False
390
+ - `push_to_hub`: False
391
+ - `resume_from_checkpoint`: None
392
+ - `hub_model_id`: None
393
+ - `hub_strategy`: every_save
394
+ - `hub_private_repo`: False
395
+ - `hub_always_push`: False
396
+ - `gradient_checkpointing`: False
397
+ - `gradient_checkpointing_kwargs`: None
398
+ - `include_inputs_for_metrics`: False
399
+ - `eval_do_concat_batches`: True
400
+ - `fp16_backend`: auto
401
+ - `push_to_hub_model_id`: None
402
+ - `push_to_hub_organization`: None
403
+ - `mp_parameters`:
404
+ - `auto_find_batch_size`: False
405
+ - `full_determinism`: False
406
+ - `torchdynamo`: None
407
+ - `ray_scope`: last
408
+ - `ddp_timeout`: 1800
409
+ - `torch_compile`: False
410
+ - `torch_compile_backend`: None
411
+ - `torch_compile_mode`: None
412
+ - `dispatch_batches`: None
413
+ - `split_batches`: None
414
+ - `include_tokens_per_second`: False
415
+ - `include_num_input_tokens_seen`: False
416
+ - `neftune_noise_alpha`: None
417
+ - `optim_target_modules`: None
418
+ - `batch_eval_metrics`: False
419
+ - `prompts`: None
420
+ - `batch_sampler`: no_duplicates
421
+ - `multi_dataset_batch_sampler`: proportional
422
+
423
+ </details>
424
+
425
+ ### Training Logs
426
+ | Epoch | Step | Training Loss | Validation Loss | cosine_ap |
427
+ |:---------:|:-------:|:-------------:|:---------------:|:---------:|
428
+ | -1 | -1 | - | - | 1.0 |
429
+ | 0.008 | 100 | 2.0126 | 1.2036 | 1.0 |
430
+ | 0.016 | 200 | 1.0366 | 0.3276 | 1.0 |
431
+ | 0.024 | 300 | 0.4426 | 0.1492 | 1.0 |
432
+ | 0.032 | 400 | 0.2518 | 0.1048 | 1.0 |
433
+ | 0.04 | 500 | 0.2026 | 0.0962 | 1.0 |
434
+ | 0.048 | 600 | 0.1818 | 0.0821 | 1.0 |
435
+ | 0.056 | 700 | 0.1797 | 0.0816 | 1.0 |
436
+ | **0.064** | **800** | **0.1845** | **0.0659** | **1.0** |
437
+ | 0.072 | 900 | 0.1474 | 0.0675 | 1.0 |
438
+ | 0.08 | 1000 | 0.1648 | 0.0750 | 1.0 |
439
+ | -1 | -1 | - | - | 1.0 |
440
+
441
+ * The bold row denotes the saved checkpoint.
442
+
443
+ ### Framework Versions
444
+ - Python: 3.12.3
445
+ - Sentence Transformers: 3.4.1
446
+ - Transformers: 4.41.1
447
+ - PyTorch: 2.3.0+cu121
448
+ - Accelerate: 0.30.1
449
+ - Datasets: 3.2.0
450
+ - Tokenizers: 0.19.1
451
+
452
+ ## Citation
453
+
454
+ ### BibTeX
455
+
456
+ #### Sentence Transformers
457
+ ```bibtex
458
+ @inproceedings{reimers-2019-sentence-bert,
459
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
460
+ author = "Reimers, Nils and Gurevych, Iryna",
461
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
462
+ month = "11",
463
+ year = "2019",
464
+ publisher = "Association for Computational Linguistics",
465
+ url = "https://arxiv.org/abs/1908.10084",
466
+ }
467
+ ```
468
+
469
+ #### MultipleNegativesRankingLoss
470
+ ```bibtex
471
+ @misc{henderson2017efficient,
472
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
473
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
474
+ year={2017},
475
+ eprint={1705.00652},
476
+ archivePrefix={arXiv},
477
+ primaryClass={cs.CL}
478
+ }
479
+ ```
480
+
481
+ <!--
482
+ ## Glossary
483
+
484
+ *Clearly define terms in order to be accessible across audiences.*
485
+ -->
486
+
487
+ <!--
488
+ ## Model Card Authors
489
+
490
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
491
+ -->
492
+
493
+ <!--
494
+ ## Model Card Contact
495
+
496
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
497
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.41.1",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ab9218d156afccd80e59c85f76b30a9ff57f6fc2eb8746e36f805b66d23fc7
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 512,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff