---
language:
- en
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:314315
- loss:MultipleNegativesRankingLoss
base_model: microsoft/mpnet-base
widget:
- source_sentence: A person dressed in red and black outside a cracked wall.
sentences:
- A person in red and black near a wall.
- Two women are in a car with a man.
- a baby cries while getting their diaper changed
- source_sentence: A man with shoulder length dark hair sits near the rocks of a waterfront
while holding a cigarette in his right hand.
sentences:
- A man holding a cigarette.
- a pair of fencers practice together
- Four skaters race each other.
- source_sentence: A man is reading a newspaper in a car dealership.
sentences:
- A man is at a car dealership.
- Guys wearing white shirts play around by the park.
- People are outside.
- source_sentence: A woman in black, seen from behind, sits next to a body of water.
sentences:
- A woman sits outside.
- There are families playing in a fountain
- A player is hoping to score a run.
- source_sentence: AN older woman appears to read from a children's book in an indoor
setting, while a seated gentleman in a service uniform looks on.
sentences:
- a man is sitting in a lawn chair
- A woman reads from a book while a man watches.
- Others look while two men carve a babecued hog
datasets:
- sentence-transformers/all-nli
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on microsoft/mpnet-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.9998531139835488
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: -0.043851763010025024
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9999265515975029
name: Cosine F1
- type: cosine_f1_threshold
value: -0.043851763010025024
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 0.9998531139835488
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: cosine_mcc
value: 0.0
name: Cosine Mcc
- type: cosine_accuracy
value: 0.9998536085492608
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.09460622072219849
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9999267989166241
name: Cosine F1
- type: cosine_f1_threshold
value: 0.09460622072219849
name: Cosine F1 Threshold
- type: cosine_precision
value: 1.0
name: Cosine Precision
- type: cosine_recall
value: 0.9998536085492608
name: Cosine Recall
- type: cosine_ap
value: 1.0
name: Cosine Ap
- type: cosine_mcc
value: 0.0
name: Cosine Mcc
---
# SentenceTransformer based on microsoft/mpnet-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
- **Language:** en
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("mrunali496/mpnet-base-all-nli-pair")
# Run inference
sentences = [
"AN older woman appears to read from a children's book in an indoor setting, while a seated gentleman in a service uniform looks on.",
'A woman reads from a book while a man watches.',
'Others look while two men carve a babecued hog',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:--------|
| cosine_accuracy | 0.9999 |
| cosine_accuracy_threshold | -0.0439 |
| cosine_f1 | 0.9999 |
| cosine_f1_threshold | -0.0439 |
| cosine_precision | 1.0 |
| cosine_recall | 0.9999 |
| **cosine_ap** | **1.0** |
| cosine_mcc | 0.0 |
#### Binary Classification
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:--------|
| cosine_accuracy | 0.9999 |
| cosine_accuracy_threshold | 0.0946 |
| cosine_f1 | 0.9999 |
| cosine_f1_threshold | 0.0946 |
| cosine_precision | 1.0 |
| cosine_recall | 0.9999 |
| **cosine_ap** | **1.0** |
| cosine_mcc | 0.0 |
## Training Details
### Training Dataset
#### all-nli
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 314,315 training samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
A person on a horse jumps over a broken down airplane.
| A person is outdoors, on a horse.
|
| Children smiling and waving at camera
| There are children present
|
| A boy is jumping on skateboard in the middle of a red bridge.
| The boy does a skateboarding trick.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Evaluation Dataset
#### all-nli
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
* Size: 6,808 evaluation samples
* Columns: anchor
and positive
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | string |
| details | Two women are embracing while holding to go packages.
| Two woman are holding packages.
|
| Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.
| Two kids in numbered jerseys wash their hands.
|
| A man selling donuts to a customer during a world exhibition event held in the city of Angeles
| A man selling donuts to a customer.
|
* Loss: [MultipleNegativesRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters