|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: bert-base-german-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- germeval_14 |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: ner_model |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: germeval_14 |
|
type: germeval_14 |
|
config: germeval_14 |
|
split: test |
|
args: germeval_14 |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9703112769708805 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8348410033576931 |
|
- name: Precision |
|
type: precision |
|
value: 0.8311310366525091 |
|
- name: Recall |
|
type: recall |
|
value: 0.8385842393460836 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_model |
|
|
|
This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germeval_14 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1446 |
|
- Accuracy: 0.9703 |
|
- F1: 0.8348 |
|
- Precision: 0.8311 |
|
- Recall: 0.8386 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| 0.1274 | 1.0 | 3000 | 0.1132 | 0.9671 | 0.8144 | 0.8031 | 0.8260 | |
|
| 0.065 | 2.0 | 6000 | 0.1382 | 0.9690 | 0.8301 | 0.8452 | 0.8155 | |
|
| 0.0365 | 3.0 | 9000 | 0.1446 | 0.9703 | 0.8348 | 0.8311 | 0.8386 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|