metadata
library_name: transformers
license: mit
base_model: bert-base-german-cased
tags:
- generated_from_trainer
datasets:
- germeval_14
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: ner_model
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: germeval_14
type: germeval_14
config: germeval_14
split: test
args: germeval_14
metrics:
- name: Accuracy
type: accuracy
value: 0.9703112769708805
- name: F1
type: f1
value: 0.8348410033576931
- name: Precision
type: precision
value: 0.8311310366525091
- name: Recall
type: recall
value: 0.8385842393460836
ner_model
This model is a fine-tuned version of bert-base-german-cased on the germeval_14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.1446
- Accuracy: 0.9703
- F1: 0.8348
- Precision: 0.8311
- Recall: 0.8386
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.1274 | 1.0 | 3000 | 0.1132 | 0.9671 | 0.8144 | 0.8031 | 0.8260 |
0.065 | 2.0 | 6000 | 0.1382 | 0.9690 | 0.8301 | 0.8452 | 0.8155 |
0.0365 | 3.0 | 9000 | 0.1446 | 0.9703 | 0.8348 | 0.8311 | 0.8386 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0