--- library_name: transformers license: mit base_model: bert-base-german-cased tags: - generated_from_trainer datasets: - germeval_14 metrics: - accuracy - f1 - precision - recall model-index: - name: ner_model results: - task: name: Token Classification type: token-classification dataset: name: germeval_14 type: germeval_14 config: germeval_14 split: test args: germeval_14 metrics: - name: Accuracy type: accuracy value: 0.9703112769708805 - name: F1 type: f1 value: 0.8348410033576931 - name: Precision type: precision value: 0.8311310366525091 - name: Recall type: recall value: 0.8385842393460836 --- # ner_model This model is a fine-tuned version of [bert-base-german-cased](https://huggingface.co/bert-base-german-cased) on the germeval_14 dataset. It achieves the following results on the evaluation set: - Loss: 0.1446 - Accuracy: 0.9703 - F1: 0.8348 - Precision: 0.8311 - Recall: 0.8386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1274 | 1.0 | 3000 | 0.1132 | 0.9671 | 0.8144 | 0.8031 | 0.8260 | | 0.065 | 2.0 | 6000 | 0.1382 | 0.9690 | 0.8301 | 0.8452 | 0.8155 | | 0.0365 | 3.0 | 9000 | 0.1446 | 0.9703 | 0.8348 | 0.8311 | 0.8386 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0