5e-05_64_10_detect / README.md
hks1444's picture
End of training
8c3c07b verified
|
raw
history blame
2.01 kB
metadata
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: 5e-05_64_10_detect
    results: []

5e-05_64_10_detect

This model is a fine-tuned version of dbmdz/bert-base-turkish-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5204
  • Precision: 0.4302
  • Recall: 0.4619
  • F1: 0.4455
  • Accuracy: 0.8994

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 62 0.4949 0.4191 0.5473 0.4747 0.8857
0.0228 2.0 124 0.4641 0.4825 0.5206 0.5008 0.9054
0.0228 3.0 186 0.5234 0.4415 0.5328 0.4829 0.8997
0.0188 4.0 248 0.5468 0.5196 0.5006 0.5099 0.9059
0.0144 5.0 310 0.5661 0.4424 0.5339 0.4839 0.8961

Framework versions

  • Transformers 4.48.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0