File size: 2,012 Bytes
8c3c07b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: 5e-05_64_10_detect
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 5e-05_64_10_detect
This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5204
- Precision: 0.4302
- Recall: 0.4619
- F1: 0.4455
- Accuracy: 0.8994
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 62 | 0.4949 | 0.4191 | 0.5473 | 0.4747 | 0.8857 |
| 0.0228 | 2.0 | 124 | 0.4641 | 0.4825 | 0.5206 | 0.5008 | 0.9054 |
| 0.0228 | 3.0 | 186 | 0.5234 | 0.4415 | 0.5328 | 0.4829 | 0.8997 |
| 0.0188 | 4.0 | 248 | 0.5468 | 0.5196 | 0.5006 | 0.5099 | 0.9059 |
| 0.0144 | 5.0 | 310 | 0.5661 | 0.4424 | 0.5339 | 0.4839 | 0.8961 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|