--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 5e-05_64_10_detect results: [] --- # 5e-05_64_10_detect This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5204 - Precision: 0.4302 - Recall: 0.4619 - F1: 0.4455 - Accuracy: 0.8994 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 62 | 0.4949 | 0.4191 | 0.5473 | 0.4747 | 0.8857 | | 0.0228 | 2.0 | 124 | 0.4641 | 0.4825 | 0.5206 | 0.5008 | 0.9054 | | 0.0228 | 3.0 | 186 | 0.5234 | 0.4415 | 0.5328 | 0.4829 | 0.8997 | | 0.0188 | 4.0 | 248 | 0.5468 | 0.5196 | 0.5006 | 0.5099 | 0.9059 | | 0.0144 | 5.0 | 310 | 0.5661 | 0.4424 | 0.5339 | 0.4839 | 0.8961 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0