|
|
|
--- |
|
tags: |
|
- bertopic |
|
library_name: bertopic |
|
pipeline_tag: text-classification |
|
--- |
|
|
|
# MARTINI_enrich_BERTopic_UKcitizen2021 |
|
|
|
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. |
|
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. |
|
|
|
## Usage |
|
|
|
To use this model, please install BERTopic: |
|
|
|
``` |
|
pip install -U bertopic |
|
``` |
|
|
|
You can use the model as follows: |
|
|
|
```python |
|
from bertopic import BERTopic |
|
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_UKcitizen2021") |
|
|
|
topic_model.get_topic_info() |
|
``` |
|
|
|
## Topic overview |
|
|
|
* Number of topics: 11 |
|
* Number of training documents: 721 |
|
|
|
<details> |
|
<summary>Click here for an overview of all topics.</summary> |
|
|
|
| Topic ID | Topic Keywords | Topic Frequency | Label | |
|
|----------|----------------|-----------------|-------| |
|
| -1 | lockdown - wef - monkeypox - agenda - nuremberg | 22 | -1_lockdown_wef_monkeypox_agenda | |
|
| 0 | vaccinated - pfizer - vaxx - worldcouncilforhealth - injections | 313 | 0_vaccinated_pfizer_vaxx_worldcouncilforhealth | |
|
| 1 | ukcitizen2021 - amendments - supranational - pandemic - wgihr | 89 | 1_ukcitizen2021_amendments_supranational_pandemic | |
|
| 2 | constable - arrested - victims - allegations - thamesvalley | 73 | 2_constable_arrested_victims_allegations | |
|
| 3 | bbc - matt - tomorrow - southampton - everywhere | 51 | 3_bbc_matt_tomorrow_southampton | |
|
| 4 | vaccines - mhra - parliamentary - claims - chope | 42 | 4_vaccines_mhra_parliamentary_claims | |
|
| 5 | ukcitizen2021 - councils - mobilise - responses - nottinghamshire | 35 | 5_ukcitizen2021_councils_mobilise_responses | |
|
| 6 | ivermectin - hydroxychloroquine - quercetin - iodine - denied | 26 | 6_ivermectin_hydroxychloroquine_quercetin_iodine | |
|
| 7 | solicitors - mhra - regulatory - bayliss - allegations | 25 | 7_solicitors_mhra_regulatory_bayliss | |
|
| 8 | vaccination - nhs - consent - compulsory - jobsnotjabs | 23 | 8_vaccination_nhs_consent_compulsory | |
|
| 9 | digital - controligarchs - england - passport - currency | 22 | 9_digital_controligarchs_england_passport | |
|
|
|
</details> |
|
|
|
## Training hyperparameters |
|
|
|
* calculate_probabilities: True |
|
* language: None |
|
* low_memory: False |
|
* min_topic_size: 10 |
|
* n_gram_range: (1, 1) |
|
* nr_topics: None |
|
* seed_topic_list: None |
|
* top_n_words: 10 |
|
* verbose: False |
|
* zeroshot_min_similarity: 0.7 |
|
* zeroshot_topic_list: None |
|
|
|
## Framework versions |
|
|
|
* Numpy: 1.26.4 |
|
* HDBSCAN: 0.8.40 |
|
* UMAP: 0.5.7 |
|
* Pandas: 2.2.3 |
|
* Scikit-Learn: 1.5.2 |
|
* Sentence-transformers: 3.3.1 |
|
* Transformers: 4.46.3 |
|
* Numba: 0.60.0 |
|
* Plotly: 5.24.1 |
|
* Python: 3.10.12 |
|
|