File size: 2,647 Bytes
6dbeff3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
tags:
- bertopic
library_name: bertopic
pipeline_tag: text-classification
---
# MARTINI_enrich_BERTopic_UKcitizen2021
This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model.
BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.
## Usage
To use this model, please install BERTopic:
```
pip install -U bertopic
```
You can use the model as follows:
```python
from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_UKcitizen2021")
topic_model.get_topic_info()
```
## Topic overview
* Number of topics: 11
* Number of training documents: 721
<details>
<summary>Click here for an overview of all topics.</summary>
| Topic ID | Topic Keywords | Topic Frequency | Label |
|----------|----------------|-----------------|-------|
| -1 | lockdown - wef - monkeypox - agenda - nuremberg | 22 | -1_lockdown_wef_monkeypox_agenda |
| 0 | vaccinated - pfizer - vaxx - worldcouncilforhealth - injections | 313 | 0_vaccinated_pfizer_vaxx_worldcouncilforhealth |
| 1 | ukcitizen2021 - amendments - supranational - pandemic - wgihr | 89 | 1_ukcitizen2021_amendments_supranational_pandemic |
| 2 | constable - arrested - victims - allegations - thamesvalley | 73 | 2_constable_arrested_victims_allegations |
| 3 | bbc - matt - tomorrow - southampton - everywhere | 51 | 3_bbc_matt_tomorrow_southampton |
| 4 | vaccines - mhra - parliamentary - claims - chope | 42 | 4_vaccines_mhra_parliamentary_claims |
| 5 | ukcitizen2021 - councils - mobilise - responses - nottinghamshire | 35 | 5_ukcitizen2021_councils_mobilise_responses |
| 6 | ivermectin - hydroxychloroquine - quercetin - iodine - denied | 26 | 6_ivermectin_hydroxychloroquine_quercetin_iodine |
| 7 | solicitors - mhra - regulatory - bayliss - allegations | 25 | 7_solicitors_mhra_regulatory_bayliss |
| 8 | vaccination - nhs - consent - compulsory - jobsnotjabs | 23 | 8_vaccination_nhs_consent_compulsory |
| 9 | digital - controligarchs - england - passport - currency | 22 | 9_digital_controligarchs_england_passport |
</details>
## Training hyperparameters
* calculate_probabilities: True
* language: None
* low_memory: False
* min_topic_size: 10
* n_gram_range: (1, 1)
* nr_topics: None
* seed_topic_list: None
* top_n_words: 10
* verbose: False
* zeroshot_min_similarity: 0.7
* zeroshot_topic_list: None
## Framework versions
* Numpy: 1.26.4
* HDBSCAN: 0.8.40
* UMAP: 0.5.7
* Pandas: 2.2.3
* Scikit-Learn: 1.5.2
* Sentence-transformers: 3.3.1
* Transformers: 4.46.3
* Numba: 0.60.0
* Plotly: 5.24.1
* Python: 3.10.12
|