AngelPanizo's picture
Add BERTopic model
6dbeff3 verified
metadata
tags:
  - bertopic
library_name: bertopic
pipeline_tag: text-classification

MARTINI_enrich_BERTopic_UKcitizen2021

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_UKcitizen2021")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 11
  • Number of training documents: 721
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 lockdown - wef - monkeypox - agenda - nuremberg 22 -1_lockdown_wef_monkeypox_agenda
0 vaccinated - pfizer - vaxx - worldcouncilforhealth - injections 313 0_vaccinated_pfizer_vaxx_worldcouncilforhealth
1 ukcitizen2021 - amendments - supranational - pandemic - wgihr 89 1_ukcitizen2021_amendments_supranational_pandemic
2 constable - arrested - victims - allegations - thamesvalley 73 2_constable_arrested_victims_allegations
3 bbc - matt - tomorrow - southampton - everywhere 51 3_bbc_matt_tomorrow_southampton
4 vaccines - mhra - parliamentary - claims - chope 42 4_vaccines_mhra_parliamentary_claims
5 ukcitizen2021 - councils - mobilise - responses - nottinghamshire 35 5_ukcitizen2021_councils_mobilise_responses
6 ivermectin - hydroxychloroquine - quercetin - iodine - denied 26 6_ivermectin_hydroxychloroquine_quercetin_iodine
7 solicitors - mhra - regulatory - bayliss - allegations 25 7_solicitors_mhra_regulatory_bayliss
8 vaccination - nhs - consent - compulsory - jobsnotjabs 23 8_vaccination_nhs_consent_compulsory
9 digital - controligarchs - england - passport - currency 22 9_digital_controligarchs_england_passport

Training hyperparameters

  • calculate_probabilities: True
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.26.4
  • HDBSCAN: 0.8.40
  • UMAP: 0.5.7
  • Pandas: 2.2.3
  • Scikit-Learn: 1.5.2
  • Sentence-transformers: 3.3.1
  • Transformers: 4.46.3
  • Numba: 0.60.0
  • Plotly: 5.24.1
  • Python: 3.10.12