legal-bert-lora / README.md
xshubhamx's picture
Upload README.md with huggingface_hub
c4c3295 verified
metadata
license: cc-by-sa-4.0
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
base_model: nlpaueb/legal-bert-base-uncased
model-index:
  - name: legal-bert-lora
    results: []

legal-bert-lora

This model is a fine-tuned version of nlpaueb/legal-bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6841
  • Accuracy: 0.8048
  • Precision: 0.7955
  • Recall: 0.8048
  • Precision Macro: 0.6332
  • Recall Macro: 0.6316
  • Macro Fpr: 0.0177
  • Weighted Fpr: 0.0170
  • Weighted Specificity: 0.9753
  • Macro Specificity: 0.9853
  • Weighted Sensitivity: 0.8048
  • Macro Sensitivity: 0.6316
  • F1 Micro: 0.8048
  • F1 Macro: 0.6233
  • F1 Weighted: 0.7978

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Precision Macro Recall Macro Macro Fpr Weighted Fpr Weighted Specificity Macro Specificity Weighted Sensitivity Macro Sensitivity F1 Micro F1 Macro F1 Weighted
No log 1.0 160 1.2986 0.6421 0.5563 0.6421 0.2826 0.3627 0.0384 0.0383 0.9531 0.9730 0.6421 0.3627 0.6421 0.3114 0.5878
No log 2.0 321 0.8962 0.7273 0.6748 0.7273 0.3629 0.4471 0.0265 0.0261 0.9685 0.9797 0.7273 0.4471 0.7273 0.3889 0.6926
No log 3.0 482 0.7814 0.7413 0.7104 0.7413 0.3985 0.4561 0.0245 0.0243 0.9703 0.9808 0.7413 0.4561 0.7413 0.4041 0.7109
1.2548 4.0 643 0.7648 0.7382 0.7158 0.7382 0.4273 0.4496 0.0254 0.0247 0.9662 0.9803 0.7382 0.4496 0.7382 0.4122 0.7112
1.2548 5.0 803 0.7329 0.7452 0.7105 0.7452 0.4162 0.4569 0.0248 0.0238 0.9668 0.9808 0.7452 0.4569 0.7452 0.4120 0.7133
1.2548 6.0 964 0.7430 0.7568 0.7547 0.7568 0.4627 0.4868 0.0229 0.0224 0.9710 0.9819 0.7568 0.4868 0.7568 0.4504 0.7424
0.6432 7.0 1125 0.7300 0.7723 0.7524 0.7723 0.5180 0.5411 0.0213 0.0206 0.9724 0.9830 0.7723 0.5411 0.7723 0.5175 0.7578
0.6432 8.0 1286 0.7212 0.7699 0.7514 0.7699 0.5096 0.5397 0.0216 0.0209 0.9727 0.9828 0.7699 0.5397 0.7699 0.5123 0.7556
0.6432 9.0 1446 0.6910 0.7839 0.7634 0.7839 0.5217 0.5566 0.0200 0.0193 0.9728 0.9838 0.7839 0.5566 0.7839 0.5280 0.7690
0.4841 10.0 1607 0.7122 0.7878 0.7732 0.7878 0.5355 0.5777 0.0195 0.0189 0.9748 0.9842 0.7878 0.5777 0.7878 0.5495 0.7776
0.4841 11.0 1768 0.6813 0.7916 0.7782 0.7916 0.5712 0.5765 0.0191 0.0185 0.9744 0.9844 0.7916 0.5765 0.7916 0.5563 0.7805
0.4841 12.0 1929 0.6845 0.7978 0.7922 0.7978 0.6111 0.6226 0.0184 0.0178 0.9759 0.9849 0.7978 0.6226 0.7978 0.6092 0.7927
0.3838 13.0 2089 0.6929 0.7986 0.7947 0.7986 0.6347 0.6038 0.0184 0.0177 0.9743 0.9849 0.7986 0.6038 0.7986 0.5954 0.7903
0.3838 14.0 2250 0.6929 0.8017 0.7960 0.8017 0.6369 0.6270 0.0180 0.0174 0.9754 0.9851 0.8017 0.6270 0.8017 0.6174 0.7952
0.3838 14.93 2400 0.6841 0.8048 0.7955 0.8048 0.6332 0.6316 0.0177 0.0170 0.9753 0.9853 0.8048 0.6316 0.8048 0.6233 0.7978

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1