File size: 6,106 Bytes
2ff914b
 
 
 
 
 
 
 
c4c3295
2ff914b
 
 
 
 
 
 
 
 
 
 
 
d644a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff914b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d644a39
2ff914b
 
 
 
 
d644a39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ff914b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
license: cc-by-sa-4.0
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
base_model: nlpaueb/legal-bert-base-uncased
model-index:
- name: legal-bert-lora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# legal-bert-lora

This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6841
- Accuracy: 0.8048
- Precision: 0.7955
- Recall: 0.8048
- Precision Macro: 0.6332
- Recall Macro: 0.6316
- Macro Fpr: 0.0177
- Weighted Fpr: 0.0170
- Weighted Specificity: 0.9753
- Macro Specificity: 0.9853
- Weighted Sensitivity: 0.8048
- Macro Sensitivity: 0.6316
- F1 Micro: 0.8048
- F1 Macro: 0.6233
- F1 Weighted: 0.7978

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
| No log        | 1.0   | 160  | 1.2986          | 0.6421   | 0.5563    | 0.6421 | 0.2826          | 0.3627       | 0.0384    | 0.0383       | 0.9531               | 0.9730            | 0.6421               | 0.3627            | 0.6421   | 0.3114   | 0.5878      |
| No log        | 2.0   | 321  | 0.8962          | 0.7273   | 0.6748    | 0.7273 | 0.3629          | 0.4471       | 0.0265    | 0.0261       | 0.9685               | 0.9797            | 0.7273               | 0.4471            | 0.7273   | 0.3889   | 0.6926      |
| No log        | 3.0   | 482  | 0.7814          | 0.7413   | 0.7104    | 0.7413 | 0.3985          | 0.4561       | 0.0245    | 0.0243       | 0.9703               | 0.9808            | 0.7413               | 0.4561            | 0.7413   | 0.4041   | 0.7109      |
| 1.2548        | 4.0   | 643  | 0.7648          | 0.7382   | 0.7158    | 0.7382 | 0.4273          | 0.4496       | 0.0254    | 0.0247       | 0.9662               | 0.9803            | 0.7382               | 0.4496            | 0.7382   | 0.4122   | 0.7112      |
| 1.2548        | 5.0   | 803  | 0.7329          | 0.7452   | 0.7105    | 0.7452 | 0.4162          | 0.4569       | 0.0248    | 0.0238       | 0.9668               | 0.9808            | 0.7452               | 0.4569            | 0.7452   | 0.4120   | 0.7133      |
| 1.2548        | 6.0   | 964  | 0.7430          | 0.7568   | 0.7547    | 0.7568 | 0.4627          | 0.4868       | 0.0229    | 0.0224       | 0.9710               | 0.9819            | 0.7568               | 0.4868            | 0.7568   | 0.4504   | 0.7424      |
| 0.6432        | 7.0   | 1125 | 0.7300          | 0.7723   | 0.7524    | 0.7723 | 0.5180          | 0.5411       | 0.0213    | 0.0206       | 0.9724               | 0.9830            | 0.7723               | 0.5411            | 0.7723   | 0.5175   | 0.7578      |
| 0.6432        | 8.0   | 1286 | 0.7212          | 0.7699   | 0.7514    | 0.7699 | 0.5096          | 0.5397       | 0.0216    | 0.0209       | 0.9727               | 0.9828            | 0.7699               | 0.5397            | 0.7699   | 0.5123   | 0.7556      |
| 0.6432        | 9.0   | 1446 | 0.6910          | 0.7839   | 0.7634    | 0.7839 | 0.5217          | 0.5566       | 0.0200    | 0.0193       | 0.9728               | 0.9838            | 0.7839               | 0.5566            | 0.7839   | 0.5280   | 0.7690      |
| 0.4841        | 10.0  | 1607 | 0.7122          | 0.7878   | 0.7732    | 0.7878 | 0.5355          | 0.5777       | 0.0195    | 0.0189       | 0.9748               | 0.9842            | 0.7878               | 0.5777            | 0.7878   | 0.5495   | 0.7776      |
| 0.4841        | 11.0  | 1768 | 0.6813          | 0.7916   | 0.7782    | 0.7916 | 0.5712          | 0.5765       | 0.0191    | 0.0185       | 0.9744               | 0.9844            | 0.7916               | 0.5765            | 0.7916   | 0.5563   | 0.7805      |
| 0.4841        | 12.0  | 1929 | 0.6845          | 0.7978   | 0.7922    | 0.7978 | 0.6111          | 0.6226       | 0.0184    | 0.0178       | 0.9759               | 0.9849            | 0.7978               | 0.6226            | 0.7978   | 0.6092   | 0.7927      |
| 0.3838        | 13.0  | 2089 | 0.6929          | 0.7986   | 0.7947    | 0.7986 | 0.6347          | 0.6038       | 0.0184    | 0.0177       | 0.9743               | 0.9849            | 0.7986               | 0.6038            | 0.7986   | 0.5954   | 0.7903      |
| 0.3838        | 14.0  | 2250 | 0.6929          | 0.8017   | 0.7960    | 0.8017 | 0.6369          | 0.6270       | 0.0180    | 0.0174       | 0.9754               | 0.9851            | 0.8017               | 0.6270            | 0.8017   | 0.6174   | 0.7952      |
| 0.3838        | 14.93 | 2400 | 0.6841          | 0.8048   | 0.7955    | 0.8048 | 0.6332          | 0.6316       | 0.0177    | 0.0170       | 0.9753               | 0.9853            | 0.8048               | 0.6316            | 0.8048   | 0.6233   | 0.7978      |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.1