End of training
Browse files
README.md
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-sa-4.0
|
3 |
+
base_model: nlpaueb/legal-bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: legal-bert-lora
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# legal-bert-lora
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.7058
|
23 |
+
- Accuracy: 0.7847
|
24 |
+
- Precision: 0.7702
|
25 |
+
- Recall: 0.7847
|
26 |
+
- Precision Macro: 0.5452
|
27 |
+
- Recall Macro: 0.5400
|
28 |
+
- Macro Fpr: 0.0199
|
29 |
+
- Weighted Fpr: 0.0192
|
30 |
+
- Weighted Specificity: 0.9737
|
31 |
+
- Macro Specificity: 0.9839
|
32 |
+
- Weighted Sensitivity: 0.7847
|
33 |
+
- Macro Sensitivity: 0.5400
|
34 |
+
- F1 Micro: 0.7847
|
35 |
+
- F1 Macro: 0.5165
|
36 |
+
- F1 Weighted: 0.7676
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 8
|
57 |
+
- eval_batch_size: 8
|
58 |
+
- seed: 42
|
59 |
+
- gradient_accumulation_steps: 4
|
60 |
+
- total_train_batch_size: 32
|
61 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
+
- lr_scheduler_type: linear
|
63 |
+
- num_epochs: 10
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
|
69 |
+
| No log | 1.0 | 160 | 1.3252 | 0.6297 | 0.5643 | 0.6297 | 0.2865 | 0.3110 | 0.0417 | 0.0403 | 0.9455 | 0.9717 | 0.6297 | 0.3110 | 0.6297 | 0.2742 | 0.5694 |
|
70 |
+
| No log | 2.0 | 321 | 0.8870 | 0.7312 | 0.6873 | 0.7312 | 0.3742 | 0.4525 | 0.0257 | 0.0256 | 0.9690 | 0.9800 | 0.7312 | 0.4525 | 0.7312 | 0.3967 | 0.6996 |
|
71 |
+
| No log | 3.0 | 482 | 0.7794 | 0.7483 | 0.7169 | 0.7483 | 0.4059 | 0.4680 | 0.0239 | 0.0235 | 0.9711 | 0.9813 | 0.7483 | 0.4680 | 0.7483 | 0.4262 | 0.7282 |
|
72 |
+
| 1.2835 | 4.0 | 643 | 0.7481 | 0.7444 | 0.7085 | 0.7444 | 0.3997 | 0.4588 | 0.0243 | 0.0239 | 0.9700 | 0.9810 | 0.7444 | 0.4588 | 0.7444 | 0.4100 | 0.7146 |
|
73 |
+
| 1.2835 | 5.0 | 803 | 0.7360 | 0.7630 | 0.7245 | 0.7630 | 0.4176 | 0.4763 | 0.0226 | 0.0217 | 0.9702 | 0.9822 | 0.7630 | 0.4763 | 0.7630 | 0.4350 | 0.7372 |
|
74 |
+
| 1.2835 | 6.0 | 964 | 0.7146 | 0.7738 | 0.7790 | 0.7738 | 0.5020 | 0.4907 | 0.0209 | 0.0205 | 0.9730 | 0.9831 | 0.7738 | 0.4907 | 0.7738 | 0.4514 | 0.7549 |
|
75 |
+
| 0.6494 | 7.0 | 1125 | 0.7362 | 0.7607 | 0.7519 | 0.7607 | 0.5232 | 0.4890 | 0.0225 | 0.0220 | 0.9724 | 0.9822 | 0.7607 | 0.4890 | 0.7607 | 0.4556 | 0.7390 |
|
76 |
+
| 0.6494 | 8.0 | 1286 | 0.7271 | 0.7800 | 0.7639 | 0.7800 | 0.5348 | 0.5171 | 0.0205 | 0.0197 | 0.9731 | 0.9835 | 0.7800 | 0.5171 | 0.7800 | 0.4923 | 0.7617 |
|
77 |
+
| 0.6494 | 9.0 | 1446 | 0.7068 | 0.7847 | 0.7739 | 0.7847 | 0.5495 | 0.5205 | 0.0199 | 0.0192 | 0.9744 | 0.9839 | 0.7847 | 0.5205 | 0.7847 | 0.4943 | 0.7665 |
|
78 |
+
| 0.5284 | 9.95 | 1600 | 0.7058 | 0.7847 | 0.7702 | 0.7847 | 0.5452 | 0.5400 | 0.0199 | 0.0192 | 0.9737 | 0.9839 | 0.7847 | 0.5400 | 0.7847 | 0.5165 | 0.7676 |
|
79 |
+
|
80 |
+
|
81 |
+
### Framework versions
|
82 |
+
|
83 |
+
- Transformers 4.35.2
|
84 |
+
- Pytorch 2.1.0+cu121
|
85 |
+
- Datasets 2.18.0
|
86 |
+
- Tokenizers 0.15.1
|