xshubhamx commited on
Commit
2ff914b
·
verified ·
1 Parent(s): 1db0314

End of training

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-sa-4.0
3
+ base_model: nlpaueb/legal-bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: legal-bert-lora
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # legal-bert-lora
19
+
20
+ This model is a fine-tuned version of [nlpaueb/legal-bert-base-uncased](https://huggingface.co/nlpaueb/legal-bert-base-uncased) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.7058
23
+ - Accuracy: 0.7847
24
+ - Precision: 0.7702
25
+ - Recall: 0.7847
26
+ - Precision Macro: 0.5452
27
+ - Recall Macro: 0.5400
28
+ - Macro Fpr: 0.0199
29
+ - Weighted Fpr: 0.0192
30
+ - Weighted Specificity: 0.9737
31
+ - Macro Specificity: 0.9839
32
+ - Weighted Sensitivity: 0.7847
33
+ - Macro Sensitivity: 0.5400
34
+ - F1 Micro: 0.7847
35
+ - F1 Macro: 0.5165
36
+ - F1 Weighted: 0.7676
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 8
57
+ - eval_batch_size: 8
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 32
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - num_epochs: 10
64
+
65
+ ### Training results
66
+
67
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Precision Macro | Recall Macro | Macro Fpr | Weighted Fpr | Weighted Specificity | Macro Specificity | Weighted Sensitivity | Macro Sensitivity | F1 Micro | F1 Macro | F1 Weighted |
68
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:---------------:|:------------:|:---------:|:------------:|:--------------------:|:-----------------:|:--------------------:|:-----------------:|:--------:|:--------:|:-----------:|
69
+ | No log | 1.0 | 160 | 1.3252 | 0.6297 | 0.5643 | 0.6297 | 0.2865 | 0.3110 | 0.0417 | 0.0403 | 0.9455 | 0.9717 | 0.6297 | 0.3110 | 0.6297 | 0.2742 | 0.5694 |
70
+ | No log | 2.0 | 321 | 0.8870 | 0.7312 | 0.6873 | 0.7312 | 0.3742 | 0.4525 | 0.0257 | 0.0256 | 0.9690 | 0.9800 | 0.7312 | 0.4525 | 0.7312 | 0.3967 | 0.6996 |
71
+ | No log | 3.0 | 482 | 0.7794 | 0.7483 | 0.7169 | 0.7483 | 0.4059 | 0.4680 | 0.0239 | 0.0235 | 0.9711 | 0.9813 | 0.7483 | 0.4680 | 0.7483 | 0.4262 | 0.7282 |
72
+ | 1.2835 | 4.0 | 643 | 0.7481 | 0.7444 | 0.7085 | 0.7444 | 0.3997 | 0.4588 | 0.0243 | 0.0239 | 0.9700 | 0.9810 | 0.7444 | 0.4588 | 0.7444 | 0.4100 | 0.7146 |
73
+ | 1.2835 | 5.0 | 803 | 0.7360 | 0.7630 | 0.7245 | 0.7630 | 0.4176 | 0.4763 | 0.0226 | 0.0217 | 0.9702 | 0.9822 | 0.7630 | 0.4763 | 0.7630 | 0.4350 | 0.7372 |
74
+ | 1.2835 | 6.0 | 964 | 0.7146 | 0.7738 | 0.7790 | 0.7738 | 0.5020 | 0.4907 | 0.0209 | 0.0205 | 0.9730 | 0.9831 | 0.7738 | 0.4907 | 0.7738 | 0.4514 | 0.7549 |
75
+ | 0.6494 | 7.0 | 1125 | 0.7362 | 0.7607 | 0.7519 | 0.7607 | 0.5232 | 0.4890 | 0.0225 | 0.0220 | 0.9724 | 0.9822 | 0.7607 | 0.4890 | 0.7607 | 0.4556 | 0.7390 |
76
+ | 0.6494 | 8.0 | 1286 | 0.7271 | 0.7800 | 0.7639 | 0.7800 | 0.5348 | 0.5171 | 0.0205 | 0.0197 | 0.9731 | 0.9835 | 0.7800 | 0.5171 | 0.7800 | 0.4923 | 0.7617 |
77
+ | 0.6494 | 9.0 | 1446 | 0.7068 | 0.7847 | 0.7739 | 0.7847 | 0.5495 | 0.5205 | 0.0199 | 0.0192 | 0.9744 | 0.9839 | 0.7847 | 0.5205 | 0.7847 | 0.4943 | 0.7665 |
78
+ | 0.5284 | 9.95 | 1600 | 0.7058 | 0.7847 | 0.7702 | 0.7847 | 0.5452 | 0.5400 | 0.0199 | 0.0192 | 0.9737 | 0.9839 | 0.7847 | 0.5400 | 0.7847 | 0.5165 | 0.7676 |
79
+
80
+
81
+ ### Framework versions
82
+
83
+ - Transformers 4.35.2
84
+ - Pytorch 2.1.0+cu121
85
+ - Datasets 2.18.0
86
+ - Tokenizers 0.15.1