metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: resnet-50-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.46823040380047504
resnet-50-finetuned-eurosat
This model is a fine-tuned version of microsoft/resnet-50 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.6973
- Accuracy: 0.4682
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.89 | 6 | 1.7731 | 0.2550 |
1.9105 | 1.89 | 12 | 1.7591 | 0.3409 |
1.9105 | 2.89 | 18 | 1.7453 | 0.3910 |
2.0207 | 3.89 | 24 | 1.7334 | 0.4394 |
1.8655 | 4.89 | 30 | 1.7232 | 0.4388 |
1.8655 | 5.89 | 36 | 1.7149 | 0.4569 |
1.9825 | 6.89 | 42 | 1.7101 | 0.4840 |
1.9825 | 7.89 | 48 | 1.7018 | 0.4736 |
1.9672 | 8.89 | 54 | 1.6976 | 0.4828 |
1.8329 | 9.89 | 60 | 1.6973 | 0.4682 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1