--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: resnet-50-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.46823040380047504 --- # resnet-50-finetuned-eurosat This model is a fine-tuned version of [microsoft/resnet-50](https://huggingface.co/microsoft/resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6973 - Accuracy: 0.4682 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 6 | 1.7731 | 0.2550 | | 1.9105 | 1.89 | 12 | 1.7591 | 0.3409 | | 1.9105 | 2.89 | 18 | 1.7453 | 0.3910 | | 2.0207 | 3.89 | 24 | 1.7334 | 0.4394 | | 1.8655 | 4.89 | 30 | 1.7232 | 0.4388 | | 1.8655 | 5.89 | 36 | 1.7149 | 0.4569 | | 1.9825 | 6.89 | 42 | 1.7101 | 0.4840 | | 1.9825 | 7.89 | 48 | 1.7018 | 0.4736 | | 1.9672 | 8.89 | 54 | 1.6976 | 0.4828 | | 1.8329 | 9.89 | 60 | 1.6973 | 0.4682 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.6.1 - Tokenizers 0.13.1