Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
import numpy as np | |
import plotly.express as px | |
import folium | |
from streamlit_folium import st_folium | |
import requests | |
# ---------------------------------------------------- | |
# 1. Load data | |
# ---------------------------------------------------- | |
def load_data(): | |
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"]) | |
monthly_df = pd.read_csv("monthly_data_2013_2024.csv") | |
return daily_df, monthly_df | |
daily_data, monthly_data = load_data() | |
# Pre-define your location dictionary so we can map lat/lon | |
LOCATIONS = { | |
"Karagwe": {"lat": -1.7718, "lon": 30.9876}, | |
"Masasi": {"lat": -10.7167, "lon": 38.8000}, | |
"Igunga": {"lat": -4.2833, "lon": 33.8833} | |
} | |
# ---------------------------------------------------- | |
# 2. Streamlit UI Layout | |
# ---------------------------------------------------- | |
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)") | |
st.sidebar.header("Filters & Options") | |
# Choose disease type | |
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"]) | |
# Choose data granularity | |
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"]) | |
# Let user filter location(s) | |
location_list = list(LOCATIONS.keys()) | |
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list) | |
# For monthly data | |
if data_choice == "Monthly": | |
year_min = int(monthly_data["year"].min()) | |
year_max = int(monthly_data["year"].max()) | |
year_range = st.sidebar.slider( | |
"Select Year Range", | |
min_value=year_min, | |
max_value=year_max, | |
value=(year_min, year_max) | |
) | |
# For daily data | |
else: | |
date_min = daily_data["date"].min() | |
date_max = daily_data["date"].max() | |
date_range = st.sidebar.date_input( | |
"Select Date Range", | |
[date_min, date_max], | |
min_value=date_min, | |
max_value=date_max | |
) | |
# ---------------------------------------------------- | |
# 3. Filter data based on user input | |
# ---------------------------------------------------- | |
if data_choice == "Monthly": | |
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy() | |
# Filter year range | |
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])] | |
# Create a "date" column for monthly data | |
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01") | |
else: | |
df = daily_data[daily_data["location"].isin(selected_locations)].copy() | |
# Filter date range | |
df = df[ | |
(df["date"] >= pd.to_datetime(date_range[0])) | |
& (df["date"] <= pd.to_datetime(date_range[1])) | |
] | |
# ---------------------------------------------------- | |
# 4. Interactive Plotly Time-Series | |
# ---------------------------------------------------- | |
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters") | |
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk" | |
if data_choice == "Monthly": | |
fig = px.line( | |
df, x="date", y=risk_col, color="location", | |
title=f"{disease_choice} Risk Over Time ({data_choice})" | |
) | |
fig.update_layout(yaxis_title="Risk (0–1)") | |
st.plotly_chart(fig, use_container_width=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
fig_temp = px.line( | |
df, x="date", y="temp_avg", color="location", | |
title="Average Temperature (°C)" | |
) | |
st.plotly_chart(fig_temp, use_container_width=True) | |
with col2: | |
fig_rain = px.line( | |
df, x="date", y="monthly_rainfall_mm", color="location", | |
title="Monthly Rainfall (mm)" | |
) | |
st.plotly_chart(fig_rain, use_container_width=True) | |
# Show outbreak months | |
if disease_choice == "Malaria": | |
flag_col = "malaria_outbreak" | |
else: | |
flag_col = "dengue_outbreak" | |
outbreak_months = df[df[flag_col] == True] | |
if not outbreak_months.empty: | |
st.write(f"**Months with likely {disease_choice} outbreak:**") | |
st.dataframe(outbreak_months[[ | |
"location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col | |
]]) | |
else: | |
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.") | |
else: | |
# Daily data | |
fig = px.line( | |
df, x="date", y=risk_col, color="location", | |
title=f"{disease_choice} Daily Risk Over Time (2013–2024)" | |
) | |
fig.update_layout(yaxis_title="Risk (0–1)") | |
st.plotly_chart(fig, use_container_width=True) | |
col1, col2 = st.columns(2) | |
with col1: | |
fig_temp = px.line( | |
df, x="date", y="temp_avg", color="location", | |
title="Daily Avg Temperature (°C)" | |
) | |
st.plotly_chart(fig_temp, use_container_width=True) | |
with col2: | |
fig_rain = px.line( | |
df, x="date", y="daily_rainfall_mm", color="location", | |
title="Daily Rainfall (mm)" | |
) | |
st.plotly_chart(fig_rain, use_container_width=True) | |
# ---------------------------------------------------- | |
# 5. Correlation Heatmap | |
# ---------------------------------------------------- | |
st.subheader(f"Correlation Heatmap - {data_choice} Data") | |
if data_choice == "Monthly": | |
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"] | |
else: | |
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"] | |
corr_df = df[subset_cols].corr() | |
fig_corr = px.imshow( | |
corr_df, text_auto=True, aspect="auto", | |
title="Correlation Matrix of Weather & Risk" | |
) | |
st.plotly_chart(fig_corr, use_container_width=True) | |
# ---------------------------------------------------- | |
# 6. Add Real-Time Weather in Folium Map + Outbreak Info | |
# ---------------------------------------------------- | |
st.subheader("Interactive Map") | |
st.markdown( | |
""" | |
**Note**: We only have 3 locations for the CSV data. | |
Markers now also show **real-time weather** from OpenWeather & an **outbreak** indicator. | |
""" | |
) | |
# --- 6A. Helper function to get current weather from OpenWeather --- | |
API_KEY = "c5b5c5ee6c497c6b1869ed926582a1ea" # <-- Your OpenWeather API key | |
def get_current_weather(lat, lon, api_key=API_KEY): | |
""" | |
Fetch current weather data from OpenWeather for given lat/lon. | |
Returns a dict with {temp, humidity, description} if successful; else None. | |
""" | |
url = f"https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={api_key}&units=metric" | |
try: | |
resp = requests.get(url) | |
if resp.status_code == 200: | |
data = resp.json() | |
# Extract a few relevant fields: | |
current_temp = data["main"]["temp"] | |
humidity = data["main"]["humidity"] | |
weather_desc = data["weather"][0]["description"] | |
return { | |
"temp": current_temp, | |
"humidity": humidity, | |
"description": weather_desc | |
} | |
else: | |
return None | |
except Exception as e: | |
# In production, you'd handle logging or fallback here | |
return None | |
# --- 6B. Create Folium Map --- | |
m = folium.Map(location=[-6.0, 35.0], zoom_start=6) | |
if disease_choice == "Malaria": | |
outbreak_flag_col = "malaria_outbreak" | |
else: | |
outbreak_flag_col = "dengue_outbreak" | |
# For each location, we show both the CSV-based stats AND real-time weather | |
if data_choice == "Monthly": | |
for loc in selected_locations: | |
loc_info = LOCATIONS[loc] | |
loc_df = df[df["location"] == loc] | |
if loc_df.empty: | |
continue | |
# Averages from the CSV data | |
avg_risk = loc_df[risk_col].mean() | |
avg_temp = loc_df["temp_avg"].mean() | |
avg_rain = loc_df["monthly_rainfall_mm"].mean() | |
# Check if there's an outbreak in the filtered monthly data | |
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0] | |
outbreak_status = "Yes" if outbreak_count > 0 else "No" | |
# Fetch real-time weather | |
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY) | |
if weather_now: | |
rt_temp = weather_now["temp"] | |
rt_hum = weather_now["humidity"] | |
rt_desc = weather_now["description"] | |
else: | |
rt_temp = None | |
rt_hum = None | |
rt_desc = "N/A" | |
# Build the popup HTML | |
popup_html = f""" | |
<b>{loc}</b><br/> | |
Disease: {disease_choice}<br/> | |
Outbreak Now (in selection)? {outbreak_status}<br/> | |
<br/> | |
<u>Historical/Forecasted Averages (CSV)</u><br/> | |
Avg Risk (selected range): {avg_risk:.2f}<br/> | |
Avg Temp (°C): {avg_temp:.2f}<br/> | |
Avg Rainfall (mm): {avg_rain:.2f}<br/> | |
<br/> | |
<u>Real-Time Weather (OpenWeather)</u><br/> | |
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/> | |
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/> | |
Conditions: {rt_desc} | |
""" | |
folium.Marker( | |
location=[loc_info["lat"], loc_info["lon"]], | |
popup=popup_html, | |
tooltip=f"{loc} ({disease_choice})" | |
).add_to(m) | |
else: | |
# Daily data | |
for loc in selected_locations: | |
loc_info = LOCATIONS[loc] | |
loc_df = df[df["location"] == loc] | |
if loc_df.empty: | |
continue | |
avg_risk = loc_df[risk_col].mean() | |
avg_temp = loc_df["temp_avg"].mean() | |
avg_rain = loc_df["daily_rainfall_mm"].mean() | |
# Check outbreak | |
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0] | |
outbreak_status = "Yes" if outbreak_count > 0 else "No" | |
# Real-time weather | |
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY) | |
if weather_now: | |
rt_temp = weather_now["temp"] | |
rt_hum = weather_now["humidity"] | |
rt_desc = weather_now["description"] | |
else: | |
rt_temp = None | |
rt_hum = None | |
rt_desc = "N/A" | |
popup_html = f""" | |
<b>{loc}</b><br/> | |
Disease: {disease_choice}<br/> | |
Outbreak Now (in selection)? {outbreak_status}<br/> | |
<br/> | |
<u>Historical/Forecasted Averages (CSV)</u><br/> | |
Avg Risk (selected range): {avg_risk:.2f}<br/> | |
Avg Temp (°C): {avg_temp:.2f}<br/> | |
Avg Rain (mm/day): {avg_rain:.2f}<br/> | |
<br/> | |
<u>Real-Time Weather (OpenWeather)</u><br/> | |
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/> | |
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/> | |
Conditions: {rt_desc} | |
""" | |
folium.Marker( | |
location=[loc_info["lat"], loc_info["lon"]], | |
popup=popup_html, | |
tooltip=f"{loc} ({disease_choice})" | |
).add_to(m) | |
# Render Folium map in Streamlit | |
st_data = st_folium(m, width=700, height=500) | |