Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,317 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import folium
|
6 |
+
from streamlit_folium import st_folium
|
7 |
+
import requests
|
8 |
+
# ----------------------------------------------------
|
9 |
+
# 1. Load data
|
10 |
+
# ----------------------------------------------------
|
11 |
+
@st.cache_data
|
12 |
+
def load_data():
|
13 |
+
daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
|
14 |
+
monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
|
15 |
+
return daily_df, monthly_df
|
16 |
+
|
17 |
+
daily_data, monthly_data = load_data()
|
18 |
+
|
19 |
+
# Pre-define your location dictionary so we can map lat/lon
|
20 |
+
LOCATIONS = {
|
21 |
+
"Karagwe": {"lat": -1.7718, "lon": 30.9876},
|
22 |
+
"Masasi": {"lat": -10.7167, "lon": 38.8000},
|
23 |
+
"Igunga": {"lat": -4.2833, "lon": 33.8833}
|
24 |
+
}
|
25 |
+
|
26 |
+
# ----------------------------------------------------
|
27 |
+
# 2. Streamlit UI Layout
|
28 |
+
# ----------------------------------------------------
|
29 |
+
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")
|
30 |
+
|
31 |
+
st.sidebar.header("Filters & Options")
|
32 |
+
|
33 |
+
# Choose disease type
|
34 |
+
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"])
|
35 |
+
|
36 |
+
# Choose data granularity
|
37 |
+
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"])
|
38 |
+
|
39 |
+
# Let user filter location(s)
|
40 |
+
location_list = list(LOCATIONS.keys())
|
41 |
+
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)
|
42 |
+
|
43 |
+
# For monthly data
|
44 |
+
if data_choice == "Monthly":
|
45 |
+
year_min = int(monthly_data["year"].min())
|
46 |
+
year_max = int(monthly_data["year"].max())
|
47 |
+
year_range = st.sidebar.slider(
|
48 |
+
"Select Year Range",
|
49 |
+
min_value=year_min,
|
50 |
+
max_value=year_max,
|
51 |
+
value=(year_min, year_max)
|
52 |
+
)
|
53 |
+
# For daily data
|
54 |
+
else:
|
55 |
+
date_min = daily_data["date"].min()
|
56 |
+
date_max = daily_data["date"].max()
|
57 |
+
date_range = st.sidebar.date_input(
|
58 |
+
"Select Date Range",
|
59 |
+
[date_min, date_max],
|
60 |
+
min_value=date_min,
|
61 |
+
max_value=date_max
|
62 |
+
)
|
63 |
+
|
64 |
+
# ----------------------------------------------------
|
65 |
+
# 3. Filter data based on user input
|
66 |
+
# ----------------------------------------------------
|
67 |
+
if data_choice == "Monthly":
|
68 |
+
df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
|
69 |
+
# Filter year range
|
70 |
+
df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
|
71 |
+
# Create a "date" column for monthly data
|
72 |
+
df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")
|
73 |
+
|
74 |
+
else:
|
75 |
+
df = daily_data[daily_data["location"].isin(selected_locations)].copy()
|
76 |
+
# Filter date range
|
77 |
+
df = df[
|
78 |
+
(df["date"] >= pd.to_datetime(date_range[0]))
|
79 |
+
& (df["date"] <= pd.to_datetime(date_range[1]))
|
80 |
+
]
|
81 |
+
|
82 |
+
# ----------------------------------------------------
|
83 |
+
# 4. Interactive Plotly Time-Series
|
84 |
+
# ----------------------------------------------------
|
85 |
+
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")
|
86 |
+
|
87 |
+
risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"
|
88 |
+
|
89 |
+
if data_choice == "Monthly":
|
90 |
+
fig = px.line(
|
91 |
+
df, x="date", y=risk_col, color="location",
|
92 |
+
title=f"{disease_choice} Risk Over Time ({data_choice})"
|
93 |
+
)
|
94 |
+
fig.update_layout(yaxis_title="Risk (0–1)")
|
95 |
+
st.plotly_chart(fig, use_container_width=True)
|
96 |
+
|
97 |
+
col1, col2 = st.columns(2)
|
98 |
+
with col1:
|
99 |
+
fig_temp = px.line(
|
100 |
+
df, x="date", y="temp_avg", color="location",
|
101 |
+
title="Average Temperature (°C)"
|
102 |
+
)
|
103 |
+
st.plotly_chart(fig_temp, use_container_width=True)
|
104 |
+
with col2:
|
105 |
+
fig_rain = px.line(
|
106 |
+
df, x="date", y="monthly_rainfall_mm", color="location",
|
107 |
+
title="Monthly Rainfall (mm)"
|
108 |
+
)
|
109 |
+
st.plotly_chart(fig_rain, use_container_width=True)
|
110 |
+
|
111 |
+
# Show outbreak months
|
112 |
+
if disease_choice == "Malaria":
|
113 |
+
flag_col = "malaria_outbreak"
|
114 |
+
else:
|
115 |
+
flag_col = "dengue_outbreak"
|
116 |
+
|
117 |
+
outbreak_months = df[df[flag_col] == True]
|
118 |
+
if not outbreak_months.empty:
|
119 |
+
st.write(f"**Months with likely {disease_choice} outbreak:**")
|
120 |
+
st.dataframe(outbreak_months[[
|
121 |
+
"location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col
|
122 |
+
]])
|
123 |
+
else:
|
124 |
+
st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")
|
125 |
+
|
126 |
+
else:
|
127 |
+
# Daily data
|
128 |
+
fig = px.line(
|
129 |
+
df, x="date", y=risk_col, color="location",
|
130 |
+
title=f"{disease_choice} Daily Risk Over Time (2013–2024)"
|
131 |
+
)
|
132 |
+
fig.update_layout(yaxis_title="Risk (0–1)")
|
133 |
+
st.plotly_chart(fig, use_container_width=True)
|
134 |
+
|
135 |
+
col1, col2 = st.columns(2)
|
136 |
+
with col1:
|
137 |
+
fig_temp = px.line(
|
138 |
+
df, x="date", y="temp_avg", color="location",
|
139 |
+
title="Daily Avg Temperature (°C)"
|
140 |
+
)
|
141 |
+
st.plotly_chart(fig_temp, use_container_width=True)
|
142 |
+
with col2:
|
143 |
+
fig_rain = px.line(
|
144 |
+
df, x="date", y="daily_rainfall_mm", color="location",
|
145 |
+
title="Daily Rainfall (mm)"
|
146 |
+
)
|
147 |
+
st.plotly_chart(fig_rain, use_container_width=True)
|
148 |
+
|
149 |
+
# ----------------------------------------------------
|
150 |
+
# 5. Correlation Heatmap
|
151 |
+
# ----------------------------------------------------
|
152 |
+
st.subheader(f"Correlation Heatmap - {data_choice} Data")
|
153 |
+
|
154 |
+
if data_choice == "Monthly":
|
155 |
+
subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
|
156 |
+
else:
|
157 |
+
subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]
|
158 |
+
|
159 |
+
corr_df = df[subset_cols].corr()
|
160 |
+
fig_corr = px.imshow(
|
161 |
+
corr_df, text_auto=True, aspect="auto",
|
162 |
+
title="Correlation Matrix of Weather & Risk"
|
163 |
+
)
|
164 |
+
st.plotly_chart(fig_corr, use_container_width=True)
|
165 |
+
|
166 |
+
# ----------------------------------------------------
|
167 |
+
# 6. Add Real-Time Weather in Folium Map + Outbreak Info
|
168 |
+
# ----------------------------------------------------
|
169 |
+
st.subheader("Interactive Map")
|
170 |
+
st.markdown(
|
171 |
+
"""
|
172 |
+
**Note**: We only have 3 locations for the CSV data.
|
173 |
+
Markers now also show **real-time weather** from OpenWeather & an **outbreak** indicator.
|
174 |
+
"""
|
175 |
+
)
|
176 |
+
|
177 |
+
# --- 6A. Helper function to get current weather from OpenWeather ---
|
178 |
+
API_KEY = "c5b5c5ee6c497c6b1869ed926582a1ea" # <-- Your OpenWeather API key
|
179 |
+
|
180 |
+
def get_current_weather(lat, lon, api_key=API_KEY):
|
181 |
+
"""
|
182 |
+
Fetch current weather data from OpenWeather for given lat/lon.
|
183 |
+
Returns a dict with {temp, humidity, description} if successful; else None.
|
184 |
+
"""
|
185 |
+
url = f"https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={api_key}&units=metric"
|
186 |
+
try:
|
187 |
+
resp = requests.get(url)
|
188 |
+
if resp.status_code == 200:
|
189 |
+
data = resp.json()
|
190 |
+
# Extract a few relevant fields:
|
191 |
+
current_temp = data["main"]["temp"]
|
192 |
+
humidity = data["main"]["humidity"]
|
193 |
+
weather_desc = data["weather"][0]["description"]
|
194 |
+
return {
|
195 |
+
"temp": current_temp,
|
196 |
+
"humidity": humidity,
|
197 |
+
"description": weather_desc
|
198 |
+
}
|
199 |
+
else:
|
200 |
+
return None
|
201 |
+
except Exception as e:
|
202 |
+
# In production, you'd handle logging or fallback here
|
203 |
+
return None
|
204 |
+
|
205 |
+
# --- 6B. Create Folium Map ---
|
206 |
+
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)
|
207 |
+
|
208 |
+
if disease_choice == "Malaria":
|
209 |
+
outbreak_flag_col = "malaria_outbreak"
|
210 |
+
else:
|
211 |
+
outbreak_flag_col = "dengue_outbreak"
|
212 |
+
|
213 |
+
# For each location, we show both the CSV-based stats AND real-time weather
|
214 |
+
if data_choice == "Monthly":
|
215 |
+
for loc in selected_locations:
|
216 |
+
loc_info = LOCATIONS[loc]
|
217 |
+
loc_df = df[df["location"] == loc]
|
218 |
+
|
219 |
+
if loc_df.empty:
|
220 |
+
continue
|
221 |
+
|
222 |
+
# Averages from the CSV data
|
223 |
+
avg_risk = loc_df[risk_col].mean()
|
224 |
+
avg_temp = loc_df["temp_avg"].mean()
|
225 |
+
avg_rain = loc_df["monthly_rainfall_mm"].mean()
|
226 |
+
|
227 |
+
# Check if there's an outbreak in the filtered monthly data
|
228 |
+
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
|
229 |
+
outbreak_status = "Yes" if outbreak_count > 0 else "No"
|
230 |
+
|
231 |
+
# Fetch real-time weather
|
232 |
+
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
|
233 |
+
|
234 |
+
if weather_now:
|
235 |
+
rt_temp = weather_now["temp"]
|
236 |
+
rt_hum = weather_now["humidity"]
|
237 |
+
rt_desc = weather_now["description"]
|
238 |
+
else:
|
239 |
+
rt_temp = None
|
240 |
+
rt_hum = None
|
241 |
+
rt_desc = "N/A"
|
242 |
+
|
243 |
+
# Build the popup HTML
|
244 |
+
popup_html = f"""
|
245 |
+
<b>{loc}</b><br/>
|
246 |
+
Disease: {disease_choice}<br/>
|
247 |
+
Outbreak Now (in selection)? {outbreak_status}<br/>
|
248 |
+
<br/>
|
249 |
+
<u>Historical/Forecasted Averages (CSV)</u><br/>
|
250 |
+
Avg Risk (selected range): {avg_risk:.2f}<br/>
|
251 |
+
Avg Temp (°C): {avg_temp:.2f}<br/>
|
252 |
+
Avg Rainfall (mm): {avg_rain:.2f}<br/>
|
253 |
+
<br/>
|
254 |
+
<u>Real-Time Weather (OpenWeather)</u><br/>
|
255 |
+
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
|
256 |
+
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
|
257 |
+
Conditions: {rt_desc}
|
258 |
+
"""
|
259 |
+
|
260 |
+
folium.Marker(
|
261 |
+
location=[loc_info["lat"], loc_info["lon"]],
|
262 |
+
popup=popup_html,
|
263 |
+
tooltip=f"{loc} ({disease_choice})"
|
264 |
+
).add_to(m)
|
265 |
+
|
266 |
+
else:
|
267 |
+
# Daily data
|
268 |
+
for loc in selected_locations:
|
269 |
+
loc_info = LOCATIONS[loc]
|
270 |
+
loc_df = df[df["location"] == loc]
|
271 |
+
|
272 |
+
if loc_df.empty:
|
273 |
+
continue
|
274 |
+
|
275 |
+
avg_risk = loc_df[risk_col].mean()
|
276 |
+
avg_temp = loc_df["temp_avg"].mean()
|
277 |
+
avg_rain = loc_df["daily_rainfall_mm"].mean()
|
278 |
+
|
279 |
+
# Check outbreak
|
280 |
+
outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
|
281 |
+
outbreak_status = "Yes" if outbreak_count > 0 else "No"
|
282 |
+
|
283 |
+
# Real-time weather
|
284 |
+
weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
|
285 |
+
if weather_now:
|
286 |
+
rt_temp = weather_now["temp"]
|
287 |
+
rt_hum = weather_now["humidity"]
|
288 |
+
rt_desc = weather_now["description"]
|
289 |
+
else:
|
290 |
+
rt_temp = None
|
291 |
+
rt_hum = None
|
292 |
+
rt_desc = "N/A"
|
293 |
+
|
294 |
+
popup_html = f"""
|
295 |
+
<b>{loc}</b><br/>
|
296 |
+
Disease: {disease_choice}<br/>
|
297 |
+
Outbreak Now (in selection)? {outbreak_status}<br/>
|
298 |
+
<br/>
|
299 |
+
<u>Historical/Forecasted Averages (CSV)</u><br/>
|
300 |
+
Avg Risk (selected range): {avg_risk:.2f}<br/>
|
301 |
+
Avg Temp (°C): {avg_temp:.2f}<br/>
|
302 |
+
Avg Rain (mm/day): {avg_rain:.2f}<br/>
|
303 |
+
<br/>
|
304 |
+
<u>Real-Time Weather (OpenWeather)</u><br/>
|
305 |
+
Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
|
306 |
+
Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
|
307 |
+
Conditions: {rt_desc}
|
308 |
+
"""
|
309 |
+
|
310 |
+
folium.Marker(
|
311 |
+
location=[loc_info["lat"], loc_info["lon"]],
|
312 |
+
popup=popup_html,
|
313 |
+
tooltip=f"{loc} ({disease_choice})"
|
314 |
+
).add_to(m)
|
315 |
+
|
316 |
+
# Render Folium map in Streamlit
|
317 |
+
st_data = st_folium(m, width=700, height=500)
|