File size: 10,995 Bytes
ec5b96f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
import streamlit as st
import pandas as pd
import numpy as np
import plotly.express as px
import folium
from streamlit_folium import st_folium
import requests  
# ----------------------------------------------------
# 1. Load data
# ----------------------------------------------------
@st.cache_data
def load_data():
    daily_df = pd.read_csv("daily_data_2013_2024.csv", parse_dates=["date"])
    monthly_df = pd.read_csv("monthly_data_2013_2024.csv")
    return daily_df, monthly_df

daily_data, monthly_data = load_data()

# Pre-define your location dictionary so we can map lat/lon
LOCATIONS = {
    "Karagwe": {"lat": -1.7718, "lon": 30.9876},
    "Masasi":  {"lat": -10.7167, "lon": 38.8000},
    "Igunga":  {"lat": -4.2833, "lon": 33.8833}
}

# ----------------------------------------------------
# 2. Streamlit UI Layout
# ----------------------------------------------------
st.title("Malaria & Dengue Outbreak Analysis (2013–2024)")

st.sidebar.header("Filters & Options")

# Choose disease type
disease_choice = st.sidebar.radio("Select Disease", ["Malaria", "Dengue"])

# Choose data granularity
data_choice = st.sidebar.radio("Data Granularity", ["Monthly", "Daily"])

# Let user filter location(s)
location_list = list(LOCATIONS.keys())
selected_locations = st.sidebar.multiselect("Select Location(s)", location_list, default=location_list)

# For monthly data
if data_choice == "Monthly":
    year_min = int(monthly_data["year"].min())
    year_max = int(monthly_data["year"].max())
    year_range = st.sidebar.slider(
        "Select Year Range", 
        min_value=year_min, 
        max_value=year_max,
        value=(year_min, year_max)
    )
# For daily data
else:
    date_min = daily_data["date"].min()
    date_max = daily_data["date"].max()
    date_range = st.sidebar.date_input(
        "Select Date Range", 
        [date_min, date_max],
        min_value=date_min,
        max_value=date_max
    )

# ----------------------------------------------------
# 3. Filter data based on user input
# ----------------------------------------------------
if data_choice == "Monthly":
    df = monthly_data[monthly_data["location"].isin(selected_locations)].copy()
    # Filter year range
    df = df[(df["year"] >= year_range[0]) & (df["year"] <= year_range[1])]
    # Create a "date" column for monthly data
    df["date"] = pd.to_datetime(df["year"].astype(str) + "-" + df["month"].astype(str) + "-01")

else:
    df = daily_data[daily_data["location"].isin(selected_locations)].copy()
    # Filter date range
    df = df[
        (df["date"] >= pd.to_datetime(date_range[0])) 
        & (df["date"] <= pd.to_datetime(date_range[1]))
    ]

# ----------------------------------------------------
# 4. Interactive Plotly Time-Series
# ----------------------------------------------------
st.subheader(f"{data_choice} {disease_choice} Risk & Climate Parameters")

risk_col = "malaria_risk" if disease_choice == "Malaria" else "dengue_risk"

if data_choice == "Monthly":
    fig = px.line(
        df, x="date", y=risk_col, color="location", 
        title=f"{disease_choice} Risk Over Time ({data_choice})"
    )
    fig.update_layout(yaxis_title="Risk (0–1)")
    st.plotly_chart(fig, use_container_width=True)
    
    col1, col2 = st.columns(2)
    with col1:
        fig_temp = px.line(
            df, x="date", y="temp_avg", color="location",
            title="Average Temperature (°C)"
        )
        st.plotly_chart(fig_temp, use_container_width=True)
    with col2:
        fig_rain = px.line(
            df, x="date", y="monthly_rainfall_mm", color="location",
            title="Monthly Rainfall (mm)"
        )
        st.plotly_chart(fig_rain, use_container_width=True)

    # Show outbreak months
    if disease_choice == "Malaria":
        flag_col = "malaria_outbreak"
    else:
        flag_col = "dengue_outbreak"

    outbreak_months = df[df[flag_col] == True]
    if not outbreak_months.empty:
        st.write(f"**Months with likely {disease_choice} outbreak:**")
        st.dataframe(outbreak_months[[
            "location","year","month","temp_avg","humidity","monthly_rainfall_mm",flag_col
        ]])
    else:
        st.write(f"No months meet the {disease_choice} outbreak criteria in this selection.")

else:
    # Daily data
    fig = px.line(
        df, x="date", y=risk_col, color="location",
        title=f"{disease_choice} Daily Risk Over Time (2013–2024)"
    )
    fig.update_layout(yaxis_title="Risk (0–1)")
    st.plotly_chart(fig, use_container_width=True)
    
    col1, col2 = st.columns(2)
    with col1:
        fig_temp = px.line(
            df, x="date", y="temp_avg", color="location",
            title="Daily Avg Temperature (°C)"
        )
        st.plotly_chart(fig_temp, use_container_width=True)
    with col2:
        fig_rain = px.line(
            df, x="date", y="daily_rainfall_mm", color="location",
            title="Daily Rainfall (mm)"
        )
        st.plotly_chart(fig_rain, use_container_width=True)

# ----------------------------------------------------
# 5. Correlation Heatmap
# ----------------------------------------------------
st.subheader(f"Correlation Heatmap - {data_choice} Data")

if data_choice == "Monthly":
    subset_cols = ["temp_avg", "humidity", "monthly_rainfall_mm", "malaria_risk", "dengue_risk"]
else:
    subset_cols = ["temp_avg", "humidity", "daily_rainfall_mm", "malaria_risk", "dengue_risk"]

corr_df = df[subset_cols].corr()
fig_corr = px.imshow(
    corr_df, text_auto=True, aspect="auto", 
    title="Correlation Matrix of Weather & Risk"
)
st.plotly_chart(fig_corr, use_container_width=True)

# ----------------------------------------------------
# 6. Add Real-Time Weather in Folium Map + Outbreak Info
# ----------------------------------------------------
st.subheader("Interactive Map")
st.markdown(
    """
    **Note**: We only have 3 locations for the CSV data.  
    Markers now also show **real-time weather** from OpenWeather & an **outbreak** indicator.
    """
)

# --- 6A. Helper function to get current weather from OpenWeather ---
API_KEY = "c5b5c5ee6c497c6b1869ed926582a1ea"  # <-- Your OpenWeather API key

def get_current_weather(lat, lon, api_key=API_KEY):
    """
    Fetch current weather data from OpenWeather for given lat/lon.
    Returns a dict with {temp, humidity, description} if successful; else None.
    """
    url = f"https://api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={api_key}&units=metric"
    try:
        resp = requests.get(url)
        if resp.status_code == 200:
            data = resp.json()
            # Extract a few relevant fields:
            current_temp = data["main"]["temp"]
            humidity = data["main"]["humidity"]
            weather_desc = data["weather"][0]["description"]
            return {
                "temp": current_temp,
                "humidity": humidity,
                "description": weather_desc
            }
        else:
            return None
    except Exception as e:
        # In production, you'd handle logging or fallback here
        return None

# --- 6B. Create Folium Map ---
m = folium.Map(location=[-6.0, 35.0], zoom_start=6)

if disease_choice == "Malaria":
    outbreak_flag_col = "malaria_outbreak"
else:
    outbreak_flag_col = "dengue_outbreak"

# For each location, we show both the CSV-based stats AND real-time weather
if data_choice == "Monthly":
    for loc in selected_locations:
        loc_info = LOCATIONS[loc]
        loc_df = df[df["location"] == loc]
        
        if loc_df.empty:
            continue
        
        # Averages from the CSV data
        avg_risk = loc_df[risk_col].mean()
        avg_temp = loc_df["temp_avg"].mean()
        avg_rain = loc_df["monthly_rainfall_mm"].mean()
        
        # Check if there's an outbreak in the filtered monthly data
        outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
        outbreak_status = "Yes" if outbreak_count > 0 else "No"
        
        # Fetch real-time weather
        weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
        
        if weather_now:
            rt_temp = weather_now["temp"]
            rt_hum = weather_now["humidity"]
            rt_desc = weather_now["description"]
        else:
            rt_temp = None
            rt_hum = None
            rt_desc = "N/A"
        
        # Build the popup HTML
        popup_html = f"""
        <b>{loc}</b><br/>
        Disease: {disease_choice}<br/>
        Outbreak Now (in selection)? {outbreak_status}<br/>
        <br/>
        <u>Historical/Forecasted Averages (CSV)</u><br/>
        Avg Risk (selected range): {avg_risk:.2f}<br/>
        Avg Temp (°C): {avg_temp:.2f}<br/>
        Avg Rainfall (mm): {avg_rain:.2f}<br/>
        <br/>
        <u>Real-Time Weather (OpenWeather)</u><br/>
        Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
        Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
        Conditions: {rt_desc}
        """
        
        folium.Marker(
            location=[loc_info["lat"], loc_info["lon"]],
            popup=popup_html,
            tooltip=f"{loc} ({disease_choice})"
        ).add_to(m)

else:
    # Daily data
    for loc in selected_locations:
        loc_info = LOCATIONS[loc]
        loc_df = df[df["location"] == loc]
        
        if loc_df.empty:
            continue
        
        avg_risk = loc_df[risk_col].mean()
        avg_temp = loc_df["temp_avg"].mean()
        avg_rain = loc_df["daily_rainfall_mm"].mean()
        
        # Check outbreak
        outbreak_count = loc_df[loc_df[outbreak_flag_col] == True].shape[0]
        outbreak_status = "Yes" if outbreak_count > 0 else "No"
        
        # Real-time weather
        weather_now = get_current_weather(loc_info["lat"], loc_info["lon"], API_KEY)
        if weather_now:
            rt_temp = weather_now["temp"]
            rt_hum = weather_now["humidity"]
            rt_desc = weather_now["description"]
        else:
            rt_temp = None
            rt_hum = None
            rt_desc = "N/A"
        
        popup_html = f"""
        <b>{loc}</b><br/>
        Disease: {disease_choice}<br/>
        Outbreak Now (in selection)? {outbreak_status}<br/>
        <br/>
        <u>Historical/Forecasted Averages (CSV)</u><br/>
        Avg Risk (selected range): {avg_risk:.2f}<br/>
        Avg Temp (°C): {avg_temp:.2f}<br/>
        Avg Rain (mm/day): {avg_rain:.2f}<br/>
        <br/>
        <u>Real-Time Weather (OpenWeather)</u><br/>
        Current Temp (°C): {rt_temp if rt_temp else 'N/A'}<br/>
        Current Humidity (%): {rt_hum if rt_hum else 'N/A'}<br/>
        Conditions: {rt_desc}
        """
        
        folium.Marker(
            location=[loc_info["lat"], loc_info["lon"]],
            popup=popup_html,
            tooltip=f"{loc} ({disease_choice})"
        ).add_to(m)

# Render Folium map in Streamlit
st_data = st_folium(m, width=700, height=500)