AI_FOR_DISABLED / app.py
jobsm's picture
newupdate
0c0dfca verified
raw
history blame
7.08 kB
import gradio as gr
import whisper
from transformers import pipeline
import requests
import cv2
import string
import numpy as np
import tensorflow as tf
import edge_tts
import asyncio
import tempfile
# Load models
whisper_model = whisper.load_model("base")
sentiment_analysis = pipeline(
"sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
)
def load_sign_language_model():
return tf.keras.models.load_model("best_model.h5")
sign_language_model = load_sign_language_model()
# Get available voices asynchronously
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
# Audio-based functions
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result["label"]: result["score"] for result in results}
return sentiment_results
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
if option == "Sentiment Only":
sentiment_text += f"{sentiment}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment}: {score:.2f}\n"
return sentiment_text
def search_text(text, api_key):
api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
headers = {"Content-Type": "application/json"}
payload = {"contents": [{"parts": [{"text": text}]}]}
try:
response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
response.raise_for_status()
response_json = response.json()
if "candidates" in response_json and response_json["candidates"]:
content_parts = response_json["candidates"][0]["content"]["parts"]
if content_parts:
return content_parts[0]["text"].strip()
return "No relevant content found."
except requests.exceptions.RequestException as e:
return {"error": str(e)}
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
async def tts_interface(text, voice, rate, pitch):
return await text_to_speech(text, voice, rate, pitch)
async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
if audio is None:
return "No audio file provided.", "", "", "", None
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
_, probs = whisper_model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(whisper_model, mel, options)
sentiment_results = analyze_sentiment(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
search_results = search_text(result.text, api_key)
explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)
return lang.upper(), result.text, sentiment_output, search_results, explanation_audio
async def classify_sign_language(image, api_key):
img = np.array(image)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = cv2.resize(gray_img, (28, 28))
normalized_img = gray_img / 255.0
input_img = np.expand_dims(normalized_img, axis=0)
output = sign_language_model.predict(input_img)
output = np.argmax(output, axis=1).item()
uppercase_alphabet = string.ascii_uppercase
output = output + 1 if output > 7 else output
pred = uppercase_alphabet[output]
explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
explanation_audio, _ = await tts_interface(explanation, None, 0, 0)
return pred, explanation, explanation_audio
async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
if input_type == "Audio":
return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch)
elif input_type == "Image":
return await classify_sign_language(image, api_key)
async def main():
voices = await get_voices()
with gr.Blocks() as demo:
gr.Markdown("# Speak & Sign AI Assistant")
with gr.Row():
with gr.Column():
gr.Markdown("### User Input")
input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
api_key_input = gr.Textbox(label="API Key", placeholder="Your API key here", type="password")
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
image_input = gr.Image(label="Upload Image", type="pil", visible=False)
tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
tts_rate = gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1)
tts_pitch = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
def update_visibility(input_type):
return gr.update(visible=input_type == "Audio"), gr.update(visible=input_type == "Image")
input_type.change(update_visibility, inputs=[input_type], outputs=[audio_input, image_input])
submit_btn = gr.Button("Submit")
with gr.Column():
gr.Markdown("### Bot Response")
lang_str = gr.Textbox(label="Detected Language", interactive=False)
text = gr.Textbox(label="Transcription or Prediction", interactive=False)
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", interactive=False)
search_results = gr.Textbox(label="Explanation", interactive=False)
audio_output = gr.Audio(label="Generated Explanation Audio", type="filepath", interactive=False)
submit_btn.click(process_input, inputs=[input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], outputs=[lang_str, text, sentiment_output, search_results, audio_output])
demo.launch(share=True)
asyncio.create_task(main())