File size: 7,083 Bytes
d1c1b86
 
 
 
 
 
 
 
1d38dc5
 
 
d1c1b86
 
 
 
0c0dfca
 
d1c1b86
 
0c0dfca
d1c1b86
 
 
0c0dfca
1d38dc5
 
0c0dfca
 
 
 
1d38dc5
d1c1b86
 
 
0c0dfca
d1c1b86
 
 
 
 
 
 
 
0c0dfca
d1c1b86
 
 
 
 
 
 
 
0c0dfca
d1c1b86
 
0c0dfca
 
 
 
d1c1b86
 
 
 
1d38dc5
 
 
 
 
 
 
 
 
0c0dfca
 
1d38dc5
 
 
0c0dfca
1d38dc5
 
 
0c0dfca
1d38dc5
0c0dfca
d1c1b86
1d38dc5
d1c1b86
 
 
 
 
 
 
 
 
 
 
 
0c0dfca
d1c1b86
 
 
0c0dfca
1d38dc5
 
d1c1b86
0c0dfca
d1c1b86
 
 
 
 
 
 
 
 
 
 
 
0c0dfca
 
d1c1b86
0c0dfca
d1c1b86
0c0dfca
d1c1b86
0c0dfca
d1c1b86
0c0dfca
d1c1b86
1d38dc5
 
d1c1b86
 
1d38dc5
d1c1b86
 
 
 
0c0dfca
 
 
 
 
 
 
 
d1c1b86
0c0dfca
 
d1c1b86
0c0dfca
d1c1b86
 
 
 
0c0dfca
 
 
 
 
d1c1b86
0c0dfca
d1c1b86
 
 
0c0dfca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import gradio as gr
import whisper
from transformers import pipeline
import requests
import cv2
import string
import numpy as np
import tensorflow as tf
import edge_tts
import asyncio
import tempfile

# Load models
whisper_model = whisper.load_model("base")
sentiment_analysis = pipeline(
    "sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
)

def load_sign_language_model():
    return tf.keras.models.load_model("best_model.h5")

sign_language_model = load_sign_language_model()

# Get available voices asynchronously
async def get_voices():
    voices = await edge_tts.list_voices()
    return {
        f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
        for v in voices
    }

# Audio-based functions
def analyze_sentiment(text):
    results = sentiment_analysis(text)
    sentiment_results = {result["label"]: result["score"] for result in results}
    return sentiment_results

def display_sentiment_results(sentiment_results, option):
    sentiment_text = ""
    for sentiment, score in sentiment_results.items():
        if option == "Sentiment Only":
            sentiment_text += f"{sentiment}\n"
        elif option == "Sentiment + Score":
            sentiment_text += f"{sentiment}: {score:.2f}\n"
    return sentiment_text

def search_text(text, api_key):
    api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
    headers = {"Content-Type": "application/json"}
    payload = {"contents": [{"parts": [{"text": text}]}]}

    try:
        response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
        response.raise_for_status()
        response_json = response.json()
        if "candidates" in response_json and response_json["candidates"]:
            content_parts = response_json["candidates"][0]["content"]["parts"]
            if content_parts:
                return content_parts[0]["text"].strip()
        return "No relevant content found."
    except requests.exceptions.RequestException as e:
        return {"error": str(e)}

async def text_to_speech(text, voice, rate, pitch):
    if not text.strip():
        return None, gr.Warning("Please enter text to convert.")
    if not voice:
        return None, gr.Warning("Please select a voice.")

    voice_short_name = voice.split(" - ")[0]
    rate_str = f"{rate:+d}%"
    pitch_str = f"{pitch:+d}Hz"
    communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
        tmp_path = tmp_file.name
        await communicate.save(tmp_path)
    
    return tmp_path, None

async def tts_interface(text, voice, rate, pitch):
    return await text_to_speech(text, voice, rate, pitch)

async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
    if audio is None:
        return "No audio file provided.", "", "", "", None

    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)

    _, probs = whisper_model.detect_language(mel)
    lang = max(probs, key=probs.get)

    options = whisper.DecodingOptions(fp16=False)
    result = whisper.decode(whisper_model, mel, options)

    sentiment_results = analyze_sentiment(result.text)
    sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)

    search_results = search_text(result.text, api_key)

    explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)

    return lang.upper(), result.text, sentiment_output, search_results, explanation_audio

async def classify_sign_language(image, api_key):
    img = np.array(image)
    gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    gray_img = cv2.resize(gray_img, (28, 28))
    normalized_img = gray_img / 255.0
    input_img = np.expand_dims(normalized_img, axis=0)

    output = sign_language_model.predict(input_img)
    output = np.argmax(output, axis=1).item()
    uppercase_alphabet = string.ascii_uppercase
    output = output + 1 if output > 7 else output
    pred = uppercase_alphabet[output]

    explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
    explanation_audio, _ = await tts_interface(explanation, None, 0, 0)

    return pred, explanation, explanation_audio

async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
    if input_type == "Audio":
        return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch)
    elif input_type == "Image":
        return await classify_sign_language(image, api_key)

async def main():
    voices = await get_voices()

    with gr.Blocks() as demo:
        gr.Markdown("# Speak & Sign AI Assistant")

        with gr.Row():
            with gr.Column():
                gr.Markdown("### User Input")
                input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
                api_key_input = gr.Textbox(label="API Key", placeholder="Your API key here", type="password")
                audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
                sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
                image_input = gr.Image(label="Upload Image", type="pil", visible=False)
                tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
                tts_rate = gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1)
                tts_pitch = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)

                def update_visibility(input_type):
                    return gr.update(visible=input_type == "Audio"), gr.update(visible=input_type == "Image")

                input_type.change(update_visibility, inputs=[input_type], outputs=[audio_input, image_input])
                submit_btn = gr.Button("Submit")

            with gr.Column():
                gr.Markdown("### Bot Response")
                lang_str = gr.Textbox(label="Detected Language", interactive=False)
                text = gr.Textbox(label="Transcription or Prediction", interactive=False)
                sentiment_output = gr.Textbox(label="Sentiment Analysis Results", interactive=False)
                search_results = gr.Textbox(label="Explanation", interactive=False)
                audio_output = gr.Audio(label="Generated Explanation Audio", type="filepath", interactive=False)

        submit_btn.click(process_input, inputs=[input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], outputs=[lang_str, text, sentiment_output, search_results, audio_output])

    demo.launch(share=True)

asyncio.create_task(main())