Spaces:
Sleeping
Sleeping
File size: 7,083 Bytes
d1c1b86 1d38dc5 d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca 1d38dc5 0c0dfca 1d38dc5 d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 1d38dc5 0c0dfca 1d38dc5 0c0dfca 1d38dc5 0c0dfca 1d38dc5 0c0dfca d1c1b86 1d38dc5 d1c1b86 0c0dfca d1c1b86 0c0dfca 1d38dc5 d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 1d38dc5 d1c1b86 1d38dc5 d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca d1c1b86 0c0dfca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
import gradio as gr
import whisper
from transformers import pipeline
import requests
import cv2
import string
import numpy as np
import tensorflow as tf
import edge_tts
import asyncio
import tempfile
# Load models
whisper_model = whisper.load_model("base")
sentiment_analysis = pipeline(
"sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
)
def load_sign_language_model():
return tf.keras.models.load_model("best_model.h5")
sign_language_model = load_sign_language_model()
# Get available voices asynchronously
async def get_voices():
voices = await edge_tts.list_voices()
return {
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
for v in voices
}
# Audio-based functions
def analyze_sentiment(text):
results = sentiment_analysis(text)
sentiment_results = {result["label"]: result["score"] for result in results}
return sentiment_results
def display_sentiment_results(sentiment_results, option):
sentiment_text = ""
for sentiment, score in sentiment_results.items():
if option == "Sentiment Only":
sentiment_text += f"{sentiment}\n"
elif option == "Sentiment + Score":
sentiment_text += f"{sentiment}: {score:.2f}\n"
return sentiment_text
def search_text(text, api_key):
api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
headers = {"Content-Type": "application/json"}
payload = {"contents": [{"parts": [{"text": text}]}]}
try:
response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
response.raise_for_status()
response_json = response.json()
if "candidates" in response_json and response_json["candidates"]:
content_parts = response_json["candidates"][0]["content"]["parts"]
if content_parts:
return content_parts[0]["text"].strip()
return "No relevant content found."
except requests.exceptions.RequestException as e:
return {"error": str(e)}
async def text_to_speech(text, voice, rate, pitch):
if not text.strip():
return None, gr.Warning("Please enter text to convert.")
if not voice:
return None, gr.Warning("Please select a voice.")
voice_short_name = voice.split(" - ")[0]
rate_str = f"{rate:+d}%"
pitch_str = f"{pitch:+d}Hz"
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
tmp_path = tmp_file.name
await communicate.save(tmp_path)
return tmp_path, None
async def tts_interface(text, voice, rate, pitch):
return await text_to_speech(text, voice, rate, pitch)
async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
if audio is None:
return "No audio file provided.", "", "", "", None
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
_, probs = whisper_model.detect_language(mel)
lang = max(probs, key=probs.get)
options = whisper.DecodingOptions(fp16=False)
result = whisper.decode(whisper_model, mel, options)
sentiment_results = analyze_sentiment(result.text)
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
search_results = search_text(result.text, api_key)
explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)
return lang.upper(), result.text, sentiment_output, search_results, explanation_audio
async def classify_sign_language(image, api_key):
img = np.array(image)
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
gray_img = cv2.resize(gray_img, (28, 28))
normalized_img = gray_img / 255.0
input_img = np.expand_dims(normalized_img, axis=0)
output = sign_language_model.predict(input_img)
output = np.argmax(output, axis=1).item()
uppercase_alphabet = string.ascii_uppercase
output = output + 1 if output > 7 else output
pred = uppercase_alphabet[output]
explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
explanation_audio, _ = await tts_interface(explanation, None, 0, 0)
return pred, explanation, explanation_audio
async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
if input_type == "Audio":
return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch)
elif input_type == "Image":
return await classify_sign_language(image, api_key)
async def main():
voices = await get_voices()
with gr.Blocks() as demo:
gr.Markdown("# Speak & Sign AI Assistant")
with gr.Row():
with gr.Column():
gr.Markdown("### User Input")
input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
api_key_input = gr.Textbox(label="API Key", placeholder="Your API key here", type="password")
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
image_input = gr.Image(label="Upload Image", type="pil", visible=False)
tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
tts_rate = gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1)
tts_pitch = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
def update_visibility(input_type):
return gr.update(visible=input_type == "Audio"), gr.update(visible=input_type == "Image")
input_type.change(update_visibility, inputs=[input_type], outputs=[audio_input, image_input])
submit_btn = gr.Button("Submit")
with gr.Column():
gr.Markdown("### Bot Response")
lang_str = gr.Textbox(label="Detected Language", interactive=False)
text = gr.Textbox(label="Transcription or Prediction", interactive=False)
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", interactive=False)
search_results = gr.Textbox(label="Explanation", interactive=False)
audio_output = gr.Audio(label="Generated Explanation Audio", type="filepath", interactive=False)
submit_btn.click(process_input, inputs=[input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], outputs=[lang_str, text, sentiment_output, search_results, audio_output])
demo.launch(share=True)
asyncio.create_task(main())
|