Spaces:
Sleeping
Sleeping
newupdate
Browse files
app.py
CHANGED
@@ -13,61 +13,54 @@ import tempfile
|
|
13 |
# Load models
|
14 |
whisper_model = whisper.load_model("base")
|
15 |
sentiment_analysis = pipeline(
|
16 |
-
"sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
|
17 |
-
|
18 |
|
19 |
def load_sign_language_model():
|
20 |
-
return tf.keras.models.load_model(
|
21 |
-
|
22 |
|
23 |
sign_language_model = load_sign_language_model()
|
24 |
|
25 |
-
# Get
|
26 |
-
|
27 |
-
|
28 |
async def get_voices():
|
29 |
voices = await edge_tts.list_voices()
|
30 |
-
return {
|
|
|
|
|
|
|
31 |
|
32 |
# Audio-based functions
|
33 |
-
|
34 |
-
|
35 |
def analyze_sentiment(text):
|
36 |
results = sentiment_analysis(text)
|
37 |
-
sentiment_results = {result[
|
38 |
-
for result in results}
|
39 |
return sentiment_results
|
40 |
|
41 |
-
|
42 |
def display_sentiment_results(sentiment_results, option):
|
43 |
sentiment_text = ""
|
44 |
for sentiment, score in sentiment_results.items():
|
45 |
if option == "Sentiment Only":
|
46 |
sentiment_text += f"{sentiment}\n"
|
47 |
elif option == "Sentiment + Score":
|
48 |
-
sentiment_text += f"{sentiment}: {score}\n"
|
49 |
return sentiment_text
|
50 |
|
51 |
-
|
52 |
def search_text(text, api_key):
|
53 |
api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
54 |
headers = {"Content-Type": "application/json"}
|
55 |
payload = {"contents": [{"parts": [{"text": text}]}]}
|
56 |
|
57 |
try:
|
58 |
-
response = requests.post(
|
59 |
-
api_endpoint, headers=headers, json=payload, params={"key": api_key})
|
60 |
response.raise_for_status()
|
61 |
response_json = response.json()
|
62 |
-
if
|
63 |
-
content_parts = response_json[
|
64 |
-
if
|
65 |
-
return content_parts[0][
|
66 |
return "No relevant content found."
|
67 |
except requests.exceptions.RequestException as e:
|
68 |
return {"error": str(e)}
|
69 |
|
70 |
-
|
71 |
async def text_to_speech(text, voice, rate, pitch):
|
72 |
if not text.strip():
|
73 |
return None, gr.Warning("Please enter text to convert.")
|
@@ -77,20 +70,18 @@ async def text_to_speech(text, voice, rate, pitch):
|
|
77 |
voice_short_name = voice.split(" - ")[0]
|
78 |
rate_str = f"{rate:+d}%"
|
79 |
pitch_str = f"{pitch:+d}Hz"
|
80 |
-
communicate = edge_tts.Communicate(
|
81 |
-
|
82 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
83 |
tmp_path = tmp_file.name
|
84 |
await communicate.save(tmp_path)
|
|
|
85 |
return tmp_path, None
|
86 |
|
87 |
-
|
88 |
async def tts_interface(text, voice, rate, pitch):
|
89 |
-
|
90 |
-
return audio, warning
|
91 |
-
|
92 |
|
93 |
-
def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
|
94 |
if audio is None:
|
95 |
return "No audio file provided.", "", "", "", None
|
96 |
|
@@ -105,49 +96,15 @@ def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_p
|
|
105 |
result = whisper.decode(whisper_model, mel, options)
|
106 |
|
107 |
sentiment_results = analyze_sentiment(result.text)
|
108 |
-
sentiment_output = display_sentiment_results(
|
109 |
-
sentiment_results, sentiment_option)
|
110 |
|
111 |
search_results = search_text(result.text, api_key)
|
112 |
|
113 |
-
|
114 |
-
explanation_audio, _ = asyncio.run(tts_interface(
|
115 |
-
search_results, tts_voice, tts_rate, tts_pitch))
|
116 |
|
117 |
return lang.upper(), result.text, sentiment_output, search_results, explanation_audio
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
def get_explanation(letter, api_key):
|
123 |
-
url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
124 |
-
headers = {"Content-Type": "application/json"}
|
125 |
-
data = {
|
126 |
-
"contents": [
|
127 |
-
{"parts": [{"text": f"Explain how the American Sign Language letter '{letter}' is shown, its significance, and why it is represented this way."}]}
|
128 |
-
]
|
129 |
-
}
|
130 |
-
params = {"key": api_key}
|
131 |
-
|
132 |
-
try:
|
133 |
-
response = requests.post(url, headers=headers,
|
134 |
-
json=data, params=params)
|
135 |
-
response.raise_for_status()
|
136 |
-
response_data = response.json()
|
137 |
-
explanation = response_data.get("contents", [{}])[0].get("parts", [{}])[
|
138 |
-
0].get("text", "No explanation available.")
|
139 |
-
# Remove unnecessary symbols and formatting
|
140 |
-
explanation = explanation.replace(
|
141 |
-
"*", "").replace("#", "").replace("$", "").replace("\n", " ").strip()
|
142 |
-
# Remove additional special characters, if needed
|
143 |
-
explanation = explanation.translate(
|
144 |
-
str.maketrans('', '', string.punctuation))
|
145 |
-
return explanation
|
146 |
-
except requests.RequestException as e:
|
147 |
-
return f"Error fetching explanation: {e}"
|
148 |
-
|
149 |
-
|
150 |
-
def classify_sign_language(image, api_key):
|
151 |
img = np.array(image)
|
152 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
153 |
gray_img = cv2.resize(gray_img, (28, 28))
|
@@ -160,22 +117,16 @@ def classify_sign_language(image, api_key):
|
|
160 |
output = output + 1 if output > 7 else output
|
161 |
pred = uppercase_alphabet[output]
|
162 |
|
163 |
-
explanation =
|
164 |
-
|
165 |
-
return pred, explanation
|
166 |
-
|
167 |
-
# Gradio interface
|
168 |
|
|
|
169 |
|
170 |
-
def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
|
171 |
if input_type == "Audio":
|
172 |
-
return inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch)
|
173 |
elif input_type == "Image":
|
174 |
-
|
175 |
-
explanation_audio, _ = asyncio.run(tts_interface(
|
176 |
-
explanation, tts_voice, tts_rate, tts_pitch))
|
177 |
-
return "N/A", pred, "N/A", explanation, explanation_audio
|
178 |
-
|
179 |
|
180 |
async def main():
|
181 |
voices = await get_voices()
|
@@ -183,74 +134,34 @@ async def main():
|
|
183 |
with gr.Blocks() as demo:
|
184 |
gr.Markdown("# Speak & Sign AI Assistant")
|
185 |
|
186 |
-
# Layout: Split user input and bot response sides
|
187 |
with gr.Row():
|
188 |
-
# User Input Side
|
189 |
with gr.Column():
|
190 |
gr.Markdown("### User Input")
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
# Audio input
|
200 |
-
audio_input = gr.Audio(
|
201 |
-
label="Upload or Record Audio", type="filepath", visible=True)
|
202 |
-
sentiment_option = gr.Radio(choices=[
|
203 |
-
"Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only", visible=True)
|
204 |
-
|
205 |
-
# Image input
|
206 |
-
image_input = gr.Image(
|
207 |
-
label="Upload Image", type="pil", visible=False)
|
208 |
-
|
209 |
-
# TTS settings for explanation
|
210 |
-
tts_voice = gr.Dropdown(label="Select Voice", choices=[
|
211 |
-
] + list(voices.keys()), value="")
|
212 |
-
tts_rate = gr.Slider(
|
213 |
-
minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1)
|
214 |
-
tts_pitch = gr.Slider(
|
215 |
-
minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
|
216 |
-
|
217 |
-
# Change input visibility based on selection
|
218 |
-
def update_visibility(input_type):
|
219 |
-
if input_type == "Audio":
|
220 |
-
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
|
221 |
-
else:
|
222 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
|
227 |
-
|
228 |
submit_btn = gr.Button("Submit")
|
229 |
|
230 |
-
# Bot Response Side
|
231 |
with gr.Column():
|
232 |
gr.Markdown("### Bot Response")
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
-
|
235 |
-
label="Detected Language", interactive=False)
|
236 |
-
text = gr.Textbox(
|
237 |
-
label="Transcription or Prediction", interactive=False)
|
238 |
-
sentiment_output = gr.Textbox(
|
239 |
-
label="Sentiment Analysis Results", interactive=False)
|
240 |
-
search_results = gr.Textbox(
|
241 |
-
label="Explanation or Search Results", interactive=False)
|
242 |
-
audio_output = gr.Audio(
|
243 |
-
label="Generated Explanation Audio", type="filepath", interactive=False)
|
244 |
-
|
245 |
-
# Submit button action
|
246 |
-
submit_btn.click(
|
247 |
-
process_input,
|
248 |
-
inputs=[input_type, audio_input, image_input, sentiment_option,
|
249 |
-
api_key_input, tts_voice, tts_rate, tts_pitch],
|
250 |
-
outputs=[lang_str, text, sentiment_output,
|
251 |
-
search_results, audio_output]
|
252 |
-
)
|
253 |
|
254 |
demo.launch(share=True)
|
255 |
|
256 |
-
asyncio.
|
|
|
13 |
# Load models
|
14 |
whisper_model = whisper.load_model("base")
|
15 |
sentiment_analysis = pipeline(
|
16 |
+
"sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions"
|
17 |
+
)
|
18 |
|
19 |
def load_sign_language_model():
|
20 |
+
return tf.keras.models.load_model("best_model.h5")
|
|
|
21 |
|
22 |
sign_language_model = load_sign_language_model()
|
23 |
|
24 |
+
# Get available voices asynchronously
|
|
|
|
|
25 |
async def get_voices():
|
26 |
voices = await edge_tts.list_voices()
|
27 |
+
return {
|
28 |
+
f"{v['ShortName']} - {v['Locale']} ({v['Gender']})": v["ShortName"]
|
29 |
+
for v in voices
|
30 |
+
}
|
31 |
|
32 |
# Audio-based functions
|
|
|
|
|
33 |
def analyze_sentiment(text):
|
34 |
results = sentiment_analysis(text)
|
35 |
+
sentiment_results = {result["label"]: result["score"] for result in results}
|
|
|
36 |
return sentiment_results
|
37 |
|
|
|
38 |
def display_sentiment_results(sentiment_results, option):
|
39 |
sentiment_text = ""
|
40 |
for sentiment, score in sentiment_results.items():
|
41 |
if option == "Sentiment Only":
|
42 |
sentiment_text += f"{sentiment}\n"
|
43 |
elif option == "Sentiment + Score":
|
44 |
+
sentiment_text += f"{sentiment}: {score:.2f}\n"
|
45 |
return sentiment_text
|
46 |
|
|
|
47 |
def search_text(text, api_key):
|
48 |
api_endpoint = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
|
49 |
headers = {"Content-Type": "application/json"}
|
50 |
payload = {"contents": [{"parts": [{"text": text}]}]}
|
51 |
|
52 |
try:
|
53 |
+
response = requests.post(api_endpoint, headers=headers, json=payload, params={"key": api_key})
|
|
|
54 |
response.raise_for_status()
|
55 |
response_json = response.json()
|
56 |
+
if "candidates" in response_json and response_json["candidates"]:
|
57 |
+
content_parts = response_json["candidates"][0]["content"]["parts"]
|
58 |
+
if content_parts:
|
59 |
+
return content_parts[0]["text"].strip()
|
60 |
return "No relevant content found."
|
61 |
except requests.exceptions.RequestException as e:
|
62 |
return {"error": str(e)}
|
63 |
|
|
|
64 |
async def text_to_speech(text, voice, rate, pitch):
|
65 |
if not text.strip():
|
66 |
return None, gr.Warning("Please enter text to convert.")
|
|
|
70 |
voice_short_name = voice.split(" - ")[0]
|
71 |
rate_str = f"{rate:+d}%"
|
72 |
pitch_str = f"{pitch:+d}Hz"
|
73 |
+
communicate = edge_tts.Communicate(text, voice_short_name, rate=rate_str, pitch=pitch_str)
|
74 |
+
|
75 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file:
|
76 |
tmp_path = tmp_file.name
|
77 |
await communicate.save(tmp_path)
|
78 |
+
|
79 |
return tmp_path, None
|
80 |
|
|
|
81 |
async def tts_interface(text, voice, rate, pitch):
|
82 |
+
return await text_to_speech(text, voice, rate, pitch)
|
|
|
|
|
83 |
|
84 |
+
async def inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch):
|
85 |
if audio is None:
|
86 |
return "No audio file provided.", "", "", "", None
|
87 |
|
|
|
96 |
result = whisper.decode(whisper_model, mel, options)
|
97 |
|
98 |
sentiment_results = analyze_sentiment(result.text)
|
99 |
+
sentiment_output = display_sentiment_results(sentiment_results, sentiment_option)
|
|
|
100 |
|
101 |
search_results = search_text(result.text, api_key)
|
102 |
|
103 |
+
explanation_audio, _ = await tts_interface(search_results, tts_voice, tts_rate, tts_pitch)
|
|
|
|
|
104 |
|
105 |
return lang.upper(), result.text, sentiment_output, search_results, explanation_audio
|
106 |
|
107 |
+
async def classify_sign_language(image, api_key):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
img = np.array(image)
|
109 |
gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
110 |
gray_img = cv2.resize(gray_img, (28, 28))
|
|
|
117 |
output = output + 1 if output > 7 else output
|
118 |
pred = uppercase_alphabet[output]
|
119 |
|
120 |
+
explanation = search_text(f"Explain the American Sign Language letter '{pred}'.", api_key)
|
121 |
+
explanation_audio, _ = await tts_interface(explanation, None, 0, 0)
|
|
|
|
|
|
|
122 |
|
123 |
+
return pred, explanation, explanation_audio
|
124 |
|
125 |
+
async def process_input(input_type, audio=None, image=None, sentiment_option=None, api_key=None, tts_voice=None, tts_rate=0, tts_pitch=0):
|
126 |
if input_type == "Audio":
|
127 |
+
return await inference_audio(audio, sentiment_option, api_key, tts_voice, tts_rate, tts_pitch)
|
128 |
elif input_type == "Image":
|
129 |
+
return await classify_sign_language(image, api_key)
|
|
|
|
|
|
|
|
|
130 |
|
131 |
async def main():
|
132 |
voices = await get_voices()
|
|
|
134 |
with gr.Blocks() as demo:
|
135 |
gr.Markdown("# Speak & Sign AI Assistant")
|
136 |
|
|
|
137 |
with gr.Row():
|
|
|
138 |
with gr.Column():
|
139 |
gr.Markdown("### User Input")
|
140 |
+
input_type = gr.Radio(label="Choose Input Type", choices=["Audio", "Image"], value="Audio")
|
141 |
+
api_key_input = gr.Textbox(label="API Key", placeholder="Your API key here", type="password")
|
142 |
+
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
|
143 |
+
sentiment_option = gr.Radio(choices=["Sentiment Only", "Sentiment + Score"], label="Sentiment Output", value="Sentiment Only")
|
144 |
+
image_input = gr.Image(label="Upload Image", type="pil", visible=False)
|
145 |
+
tts_voice = gr.Dropdown(label="Select Voice", choices=[""] + list(voices.keys()), value="")
|
146 |
+
tts_rate = gr.Slider(minimum=-50, maximum=50, value=0, label="Speech Rate Adjustment (%)", step=1)
|
147 |
+
tts_pitch = gr.Slider(minimum=-20, maximum=20, value=0, label="Pitch Adjustment (Hz)", step=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
def update_visibility(input_type):
|
150 |
+
return gr.update(visible=input_type == "Audio"), gr.update(visible=input_type == "Image")
|
151 |
|
152 |
+
input_type.change(update_visibility, inputs=[input_type], outputs=[audio_input, image_input])
|
153 |
submit_btn = gr.Button("Submit")
|
154 |
|
|
|
155 |
with gr.Column():
|
156 |
gr.Markdown("### Bot Response")
|
157 |
+
lang_str = gr.Textbox(label="Detected Language", interactive=False)
|
158 |
+
text = gr.Textbox(label="Transcription or Prediction", interactive=False)
|
159 |
+
sentiment_output = gr.Textbox(label="Sentiment Analysis Results", interactive=False)
|
160 |
+
search_results = gr.Textbox(label="Explanation", interactive=False)
|
161 |
+
audio_output = gr.Audio(label="Generated Explanation Audio", type="filepath", interactive=False)
|
162 |
|
163 |
+
submit_btn.click(process_input, inputs=[input_type, audio_input, image_input, sentiment_option, api_key_input, tts_voice, tts_rate, tts_pitch], outputs=[lang_str, text, sentiment_output, search_results, audio_output])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
demo.launch(share=True)
|
166 |
|
167 |
+
asyncio.create_task(main())
|