File size: 14,060 Bytes
63ab978
 
a63d493
63ab978
18ab700
a63d493
63ab978
a63d493
63ab978
9cf2e86
5f3fe7d
9cf2e86
312644e
9cf2e86
9cbb786
2ff01cb
91b9b83
67cc6b1
63ab978
67cc6b1
5845bfc
 
f9abd83
 
9f69aa4
1f79d6e
00efe30
 
6d9d096
63ab978
9cf2e86
9f69aa4
5f3fe7d
ccf78ae
9f69aa4
 
 
9cf2e86
 
 
 
 
9f69aa4
9cf2e86
5f3fe7d
9f69aa4
ccf78ae
9f69aa4
9cf2e86
 
9f69aa4
 
91b9b83
6d9de1d
 
9f69aa4
 
 
 
6d9de1d
6074f61
 
9f69aa4
a63d493
9f69aa4
 
 
 
 
6074f61
 
9f69aa4
6074f61
6d9de1d
a63d493
 
 
5f3fe7d
a63d493
9f69aa4
6074f61
 
a63d493
 
6074f61
 
a63d493
 
6074f61
9f69aa4
 
6d9de1d
9f69aa4
6074f61
a63d493
6074f61
67cc6b1
9f69aa4
63ab978
9cf2e86
9f69aa4
5f3fe7d
ccf78ae
9f69aa4
 
9cf2e86
 
 
 
 
9f69aa4
 
5f3fe7d
9f69aa4
ccf78ae
 
9cf2e86
 
9f69aa4
 
6d9de1d
 
 
9f69aa4
 
 
 
9cf2e86
6074f61
 
9f69aa4
6074f61
21c25c6
9f69aa4
 
 
91b9b83
21c25c6
6074f61
9f69aa4
a63d493
 
 
5f3fe7d
a63d493
 
9f69aa4
 
6074f61
a63d493
6074f61
e29f6b4
 
9f69aa4
e29f6b4
 
 
 
 
 
 
 
91b9b83
9cf2e86
9f69aa4
5f3fe7d
9f69aa4
 
9cf2e86
 
 
 
 
9f69aa4
9cf2e86
5f3fe7d
9f69aa4
9cf2e86
 
9f69aa4
 
91b9b83
6d9de1d
 
9f69aa4
 
 
 
6d9de1d
6074f61
9f69aa4
 
 
 
 
 
6074f61
63ab978
9f69aa4
a63d493
 
 
5f3fe7d
a63d493
63ab978
9f69aa4
 
6074f61
a63d493
6074f61
67cc6b1
9f69aa4
a63d493
 
 
9f69aa4
 
18ab700
a63d493
9f69aa4
a63d493
 
 
9f69aa4
a63d493
 
 
9f69aa4
 
a63d493
 
 
18ab700
a63d493
 
 
 
 
67e11f0
9f69aa4
 
 
 
 
 
a63d493
 
 
 
 
9f69aa4
a63d493
9f69aa4
 
 
 
 
84a6b12
 
b8faf9d
45fcb1d
 
a63d493
 
 
 
9f69aa4
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
 
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
6d9d096
9f69aa4
a63d493
 
5f3fe7d
 
 
 
 
a63d493
9f69aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a63d493
 
 
 
 
 
 
5f3fe7d
 
6d9de1d
 
5f3fe7d
 
 
6d9de1d
 
5f3fe7d
 
 
6d9de1d
 
 
a63d493
 
 
9f69aa4
 
 
 
 
 
 
 
 
 
 
 
a63d493
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
import whisper
import gradio as gr
import time
import os
from typing import BinaryIO, Union, Tuple, List
import numpy as np
from datetime import datetime
import torch

from .base_interface import BaseInterface
from modules.subtitle_manager import get_srt, get_vtt, get_txt, write_file, safe_filename
from modules.youtube_manager import get_ytdata, get_ytaudio
from modules.whisper_parameter import *

DEFAULT_MODEL_SIZE = "large-v3"


class WhisperInference(BaseInterface):
    def __init__(self):
        super().__init__()
        self.current_model_size = None
        self.model = None
        self.available_models = whisper.available_models()
        self.available_langs = sorted(list(whisper.tokenizer.LANGUAGES.values()))
        self.translatable_model = ["large", "large-v1", "large-v2", "large-v3"]
        self.device = "cuda" if torch.cuda.is_available() else "cpu"
        self.available_compute_types = ["float16", "float32"]
        self.current_compute_type = "float16" if self.device == "cuda" else "float32"
        self.model_dir = os.path.join("models", "Whisper")

    def transcribe_file(self,
                        files: list,
                        file_format: str,
                        add_timestamp: bool,
                        progress=gr.Progress(),
                        *whisper_params
                        ) -> list:
        """
        Write subtitle file from Files

        Parameters
        ----------
        files: list
            List of files to transcribe from gr.Files()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the subtitle filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            files_info = {}
            for file in files:
                progress(0, desc="Loading Audio..")
                audio = whisper.load_audio(file.name)

                result, elapsed_time = self.transcribe(audio,
                                                       progress,
                                                       *whisper_params)
                progress(1, desc="Completed!")

                file_name, file_ext = os.path.splitext(os.path.basename(file.name))
                file_name = safe_filename(file_name)
                subtitle, file_path = self.generate_and_write_file(
                    file_name=file_name,
                    transcribed_segments=result,
                    add_timestamp=add_timestamp,
                    file_format=file_format
                )
                files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time, "path": file_path}

            total_result = ''
            total_time = 0
            for file_name, info in files_info.items():
                total_result += '------------------------------------\n'
                total_result += f'{file_name}\n\n'
                total_result += f"{info['subtitle']}"
                total_time += info["elapsed_time"]

            result_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
            result_file_path = [info['path'] for info in files_info.values()]

            return [result_str, result_file_path]
        except Exception as e:
            print(f"Error transcribing file: {str(e)}")
        finally:
            self.release_cuda_memory()
            self.remove_input_files([file.name for file in files])

    def transcribe_youtube(self,
                           youtube_link: str,
                           file_format: str,
                           add_timestamp: bool,
                           progress=gr.Progress(),
                           *whisper_params) -> list:
        """
        Write subtitle file from Youtube

        Parameters
        ----------
        youtube_link: str
            URL of the Youtube video to transcribe from gr.Textbox()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        add_timestamp: bool
            Boolean value from gr.Checkbox() that determines whether to add a timestamp at the end of the filename.
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            progress(0, desc="Loading Audio from Youtube..")
            yt = get_ytdata(youtube_link)
            audio = whisper.load_audio(get_ytaudio(yt))

            result, elapsed_time = self.transcribe(audio,
                                                   progress,
                                                   *whisper_params)
            progress(1, desc="Completed!")

            file_name = safe_filename(yt.title)
            subtitle, result_file_path = self.generate_and_write_file(
                file_name=file_name,
                transcribed_segments=result,
                add_timestamp=add_timestamp,
                file_format=file_format
            )

            result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
            return [result_str, result_file_path]
        except Exception as e:
            print(f"Error transcribing youtube video: {str(e)}")
        finally:
            try:
                if 'yt' not in locals():
                    yt = get_ytdata(youtube_link)
                    file_path = get_ytaudio(yt)
                else:
                    file_path = get_ytaudio(yt)

                self.release_cuda_memory()
                self.remove_input_files([file_path])
            except Exception as cleanup_error:
                pass

    def transcribe_mic(self,
                       mic_audio: str,
                       file_format: str,
                       progress=gr.Progress(),
                       *whisper_params) -> list:
        """
        Write subtitle file from microphone

        Parameters
        ----------
        mic_audio: str
            Audio file path from gr.Microphone()
        file_format: str
            Subtitle File format to write from gr.Dropdown(). Supported format: [SRT, WebVTT, txt]
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        result_str:
            Result of transcription to return to gr.Textbox()
        result_file_path:
            Output file path to return to gr.Files()
        """
        try:
            progress(0, desc="Loading Audio..")
            result, elapsed_time = self.transcribe(
                mic_audio,
                progress,
                *whisper_params,
            )
            progress(1, desc="Completed!")

            subtitle, result_file_path = self.generate_and_write_file(
                file_name="Mic",
                transcribed_segments=result,
                add_timestamp=True,
                file_format=file_format
            )

            result_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
            return [result_str, result_file_path]
        except Exception as e:
            print(f"Error transcribing mic: {str(e)}")
        finally:
            self.release_cuda_memory()
            self.remove_input_files([mic_audio])

    def transcribe(self,
                   audio: Union[str, np.ndarray, torch.Tensor],
                   progress: gr.Progress,
                   *whisper_params,
                   ) -> Tuple[List[dict], float]:
        """
        transcribe method for faster-whisper.

        Parameters
        ----------
        audio: Union[str, BinaryIO, np.ndarray]
            Audio path or file binary or Audio numpy array
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        *whisper_params: tuple
            Gradio components related to Whisper. see whisper_data_class.py for details.

        Returns
        ----------
        segments_result: List[dict]
            list of dicts that includes start, end timestamps and transcribed text
        elapsed_time: float
            elapsed time for transcription
        """
        start_time = time.time()
        params = WhisperValues(*whisper_params)

        if params.model_size != self.current_model_size or self.model is None or self.current_compute_type != params.compute_type:
            self.update_model(params.model_size, params.compute_type, progress)

        if params.lang == "Automatic Detection":
            params.lang = None

        def progress_callback(progress_value):
            progress(progress_value, desc="Transcribing..")

        segments_result = self.model.transcribe(audio=audio,
                                                language=params.lang,
                                                verbose=False,
                                                beam_size=params.beam_size,
                                                logprob_threshold=params.log_prob_threshold,
                                                no_speech_threshold=params.no_speech_threshold,
                                                task="translate" if params.is_translate and self.current_model_size in self.translatable_model else "transcribe",
                                                fp16=True if params.compute_type == "float16" else False,
                                                best_of=params.best_of,
                                                patience=params.patience,
                                                temperature=params.temperature,
                                                compression_ratio_threshold=params.compression_ratio_threshold,
                                                progress_callback=progress_callback,)["segments"]
        elapsed_time = time.time() - start_time

        return segments_result, elapsed_time

    def update_model(self,
                     model_size: str,
                     compute_type: str,
                     progress: gr.Progress,
                     ):
        """
        Update current model setting

        Parameters
        ----------
        model_size: str
            Size of whisper model
        compute_type: str
            Compute type for transcription.
            see more info : https://opennmt.net/CTranslate2/quantization.html
        progress: gr.Progress
            Indicator to show progress directly in gradio.
        """
        progress(0, desc="Initializing Model..")
        self.current_compute_type = compute_type
        self.current_model_size = model_size
        self.model = whisper.load_model(
            name=model_size,
            device=self.device,
            download_root=self.model_dir
        )

    @staticmethod
    def generate_and_write_file(file_name: str,
                                transcribed_segments: list,
                                add_timestamp: bool,
                                file_format: str,
                                ) -> str:
        """
        Writes subtitle file

        Parameters
        ----------
        file_name: str
            Output file name
        transcribed_segments: list
            Text segments transcribed from audio
        add_timestamp: bool
            Determines whether to add a timestamp to the end of the filename.
        file_format: str
            File format to write. Supported formats: [SRT, WebVTT, txt]

        Returns
        ----------
        content: str
            Result of the transcription
        output_path: str
            output file path
        """
        timestamp = datetime.now().strftime("%m%d%H%M%S")
        if add_timestamp:
            output_path = os.path.join("outputs", f"{file_name}-{timestamp}")
        else:
            output_path = os.path.join("outputs", f"{file_name}")

        if file_format == "SRT":
            content = get_srt(transcribed_segments)
            output_path += '.srt'
            write_file(content, output_path)

        elif file_format == "WebVTT":
            content = get_vtt(transcribed_segments)
            output_path += '.vtt'
            write_file(content, output_path)

        elif file_format == "txt":
            content = get_txt(transcribed_segments)
            output_path += '.txt'
            write_file(content, output_path)
        return content, output_path

    @staticmethod
    def format_time(elapsed_time: float) -> str:
        """
        Get {hours} {minutes} {seconds} time format string

        Parameters
        ----------
        elapsed_time: str
            Elapsed time for transcription

        Returns
        ----------
        Time format string
        """
        hours, rem = divmod(elapsed_time, 3600)
        minutes, seconds = divmod(rem, 60)

        time_str = ""
        if hours:
            time_str += f"{hours} hours "
        if minutes:
            time_str += f"{minutes} minutes "
        seconds = round(seconds)
        time_str += f"{seconds} seconds"

        return time_str.strip()