Spaces:
Running
Running
jhj0517
commited on
Commit
·
6d9de1d
1
Parent(s):
e3a7cef
add `Files` to output
Browse files- modules/faster_whisper_inference.py +34 -18
- modules/nllb_inference.py +14 -5
- modules/whisper_Inference.py +41 -21
modules/faster_whisper_inference.py
CHANGED
@@ -42,7 +42,7 @@ class FasterWhisperInference(BaseInterface):
|
|
42 |
no_speech_threshold: float,
|
43 |
compute_type: str,
|
44 |
progress=gr.Progress()
|
45 |
-
) ->
|
46 |
"""
|
47 |
Write subtitle file from Files
|
48 |
|
@@ -78,7 +78,9 @@ class FasterWhisperInference(BaseInterface):
|
|
78 |
|
79 |
Returns
|
80 |
----------
|
|
|
81 |
String to return to gr.Textbox()
|
|
|
82 |
"""
|
83 |
try:
|
84 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
@@ -95,16 +97,15 @@ class FasterWhisperInference(BaseInterface):
|
|
95 |
progress=progress
|
96 |
)
|
97 |
|
98 |
-
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.
|
99 |
file_name = safe_filename(file_name)
|
100 |
-
subtitle = self.generate_and_write_file(
|
101 |
file_name=file_name,
|
102 |
transcribed_segments=transcribed_segments,
|
103 |
add_timestamp=add_timestamp,
|
104 |
file_format=file_format
|
105 |
)
|
106 |
-
|
107 |
-
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task}
|
108 |
|
109 |
total_result = ''
|
110 |
total_time = 0
|
@@ -114,7 +115,10 @@ class FasterWhisperInference(BaseInterface):
|
|
114 |
total_result += f'{info["subtitle"]}'
|
115 |
total_time += info["time_for_task"]
|
116 |
|
117 |
-
|
|
|
|
|
|
|
118 |
|
119 |
except Exception as e:
|
120 |
print(f"Error transcribing file on line {e}")
|
@@ -134,7 +138,7 @@ class FasterWhisperInference(BaseInterface):
|
|
134 |
no_speech_threshold: float,
|
135 |
compute_type: str,
|
136 |
progress=gr.Progress()
|
137 |
-
) ->
|
138 |
"""
|
139 |
Write subtitle file from Youtube
|
140 |
|
@@ -170,7 +174,9 @@ class FasterWhisperInference(BaseInterface):
|
|
170 |
|
171 |
Returns
|
172 |
----------
|
|
|
173 |
String to return to gr.Textbox()
|
|
|
174 |
"""
|
175 |
try:
|
176 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
@@ -192,15 +198,18 @@ class FasterWhisperInference(BaseInterface):
|
|
192 |
progress(1, desc="Completed!")
|
193 |
|
194 |
file_name = safe_filename(yt.title)
|
195 |
-
subtitle = self.generate_and_write_file(
|
196 |
file_name=file_name,
|
197 |
transcribed_segments=transcribed_segments,
|
198 |
add_timestamp=add_timestamp,
|
199 |
file_format=file_format
|
200 |
)
|
201 |
-
|
|
|
|
|
|
|
202 |
except Exception as e:
|
203 |
-
|
204 |
finally:
|
205 |
try:
|
206 |
if 'yt' not in locals():
|
@@ -225,7 +234,7 @@ class FasterWhisperInference(BaseInterface):
|
|
225 |
no_speech_threshold: float,
|
226 |
compute_type: str,
|
227 |
progress=gr.Progress()
|
228 |
-
) ->
|
229 |
"""
|
230 |
Write subtitle file from microphone
|
231 |
|
@@ -259,7 +268,9 @@ class FasterWhisperInference(BaseInterface):
|
|
259 |
|
260 |
Returns
|
261 |
----------
|
|
|
262 |
String to return to gr.Textbox()
|
|
|
263 |
"""
|
264 |
try:
|
265 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
@@ -277,15 +288,17 @@ class FasterWhisperInference(BaseInterface):
|
|
277 |
)
|
278 |
progress(1, desc="Completed!")
|
279 |
|
280 |
-
subtitle = self.generate_and_write_file(
|
281 |
file_name="Mic",
|
282 |
transcribed_segments=transcribed_segments,
|
283 |
add_timestamp=True,
|
284 |
file_format=file_format
|
285 |
)
|
286 |
-
|
|
|
|
|
287 |
except Exception as e:
|
288 |
-
|
289 |
finally:
|
290 |
self.release_cuda_memory()
|
291 |
self.remove_input_files([micaudio])
|
@@ -395,16 +408,19 @@ class FasterWhisperInference(BaseInterface):
|
|
395 |
|
396 |
if file_format == "SRT":
|
397 |
content = get_srt(transcribed_segments)
|
398 |
-
|
|
|
399 |
|
400 |
elif file_format == "WebVTT":
|
401 |
content = get_vtt(transcribed_segments)
|
402 |
-
|
|
|
403 |
|
404 |
elif file_format == "txt":
|
405 |
content = get_txt(transcribed_segments)
|
406 |
-
|
407 |
-
|
|
|
408 |
|
409 |
@staticmethod
|
410 |
def format_time(elapsed_time: float) -> str:
|
|
|
42 |
no_speech_threshold: float,
|
43 |
compute_type: str,
|
44 |
progress=gr.Progress()
|
45 |
+
) -> list:
|
46 |
"""
|
47 |
Write subtitle file from Files
|
48 |
|
|
|
78 |
|
79 |
Returns
|
80 |
----------
|
81 |
+
A List of
|
82 |
String to return to gr.Textbox()
|
83 |
+
Files to return to gr.Files()
|
84 |
"""
|
85 |
try:
|
86 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
|
|
97 |
progress=progress
|
98 |
)
|
99 |
|
100 |
+
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.name))
|
101 |
file_name = safe_filename(file_name)
|
102 |
+
subtitle, file_path = self.generate_and_write_file(
|
103 |
file_name=file_name,
|
104 |
transcribed_segments=transcribed_segments,
|
105 |
add_timestamp=add_timestamp,
|
106 |
file_format=file_format
|
107 |
)
|
108 |
+
files_info[file_name] = {"subtitle": subtitle, "time_for_task": time_for_task, "path": file_path}
|
|
|
109 |
|
110 |
total_result = ''
|
111 |
total_time = 0
|
|
|
115 |
total_result += f'{info["subtitle"]}'
|
116 |
total_time += info["time_for_task"]
|
117 |
|
118 |
+
gr_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
119 |
+
gr_file_path = [info['path'] for info in files_info.values()]
|
120 |
+
|
121 |
+
return [gr_str, gr_file_path]
|
122 |
|
123 |
except Exception as e:
|
124 |
print(f"Error transcribing file on line {e}")
|
|
|
138 |
no_speech_threshold: float,
|
139 |
compute_type: str,
|
140 |
progress=gr.Progress()
|
141 |
+
) -> list:
|
142 |
"""
|
143 |
Write subtitle file from Youtube
|
144 |
|
|
|
174 |
|
175 |
Returns
|
176 |
----------
|
177 |
+
A List of
|
178 |
String to return to gr.Textbox()
|
179 |
+
Files to return to gr.Files()
|
180 |
"""
|
181 |
try:
|
182 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
|
|
198 |
progress(1, desc="Completed!")
|
199 |
|
200 |
file_name = safe_filename(yt.title)
|
201 |
+
subtitle, file_path = self.generate_and_write_file(
|
202 |
file_name=file_name,
|
203 |
transcribed_segments=transcribed_segments,
|
204 |
add_timestamp=add_timestamp,
|
205 |
file_format=file_format
|
206 |
)
|
207 |
+
gr_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
208 |
+
|
209 |
+
return [gr_str, file_path]
|
210 |
+
|
211 |
except Exception as e:
|
212 |
+
print(f"Error transcribing file on line {e}")
|
213 |
finally:
|
214 |
try:
|
215 |
if 'yt' not in locals():
|
|
|
234 |
no_speech_threshold: float,
|
235 |
compute_type: str,
|
236 |
progress=gr.Progress()
|
237 |
+
) -> list:
|
238 |
"""
|
239 |
Write subtitle file from microphone
|
240 |
|
|
|
268 |
|
269 |
Returns
|
270 |
----------
|
271 |
+
A List of
|
272 |
String to return to gr.Textbox()
|
273 |
+
Files to return to gr.Files()
|
274 |
"""
|
275 |
try:
|
276 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
|
|
288 |
)
|
289 |
progress(1, desc="Completed!")
|
290 |
|
291 |
+
subtitle, file_path = self.generate_and_write_file(
|
292 |
file_name="Mic",
|
293 |
transcribed_segments=transcribed_segments,
|
294 |
add_timestamp=True,
|
295 |
file_format=file_format
|
296 |
)
|
297 |
+
|
298 |
+
gr_str = f"Done in {self.format_time(time_for_task)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
299 |
+
return [gr_str, file_path]
|
300 |
except Exception as e:
|
301 |
+
print(f"Error transcribing file on line {e}")
|
302 |
finally:
|
303 |
self.release_cuda_memory()
|
304 |
self.remove_input_files([micaudio])
|
|
|
408 |
|
409 |
if file_format == "SRT":
|
410 |
content = get_srt(transcribed_segments)
|
411 |
+
output_path += '.srt'
|
412 |
+
write_file(content, output_path)
|
413 |
|
414 |
elif file_format == "WebVTT":
|
415 |
content = get_vtt(transcribed_segments)
|
416 |
+
output_path += '.vtt'
|
417 |
+
write_file(content, output_path)
|
418 |
|
419 |
elif file_format == "txt":
|
420 |
content = get_txt(transcribed_segments)
|
421 |
+
output_path += '.txt'
|
422 |
+
write_file(content, output_path)
|
423 |
+
return content, output_path
|
424 |
|
425 |
@staticmethod
|
426 |
def format_time(elapsed_time: float) -> str:
|
modules/nllb_inference.py
CHANGED
@@ -34,7 +34,7 @@ class NLLBInference(BaseInterface):
|
|
34 |
src_lang: str,
|
35 |
tgt_lang: str,
|
36 |
add_timestamp: bool,
|
37 |
-
progress=gr.Progress()):
|
38 |
"""
|
39 |
Translate subtitle file from source language to target language
|
40 |
|
@@ -53,6 +53,12 @@ class NLLBInference(BaseInterface):
|
|
53 |
progress: gr.Progress
|
54 |
Indicator to show progress directly in gradio.
|
55 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
"""
|
57 |
try:
|
58 |
if model_size != self.current_model_size or self.model is None:
|
@@ -92,8 +98,9 @@ class NLLBInference(BaseInterface):
|
|
92 |
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
|
93 |
else:
|
94 |
output_path = os.path.join("outputs", "translations", f"{file_name}")
|
|
|
95 |
|
96 |
-
write_file(subtitle,
|
97 |
|
98 |
elif file_ext == ".vtt":
|
99 |
parsed_dicts = parse_vtt(file_path=file_path)
|
@@ -109,8 +116,9 @@ class NLLBInference(BaseInterface):
|
|
109 |
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
|
110 |
else:
|
111 |
output_path = os.path.join("outputs", "translations", f"{file_name}")
|
|
|
112 |
|
113 |
-
write_file(subtitle,
|
114 |
|
115 |
files_info[file_name] = subtitle
|
116 |
|
@@ -120,9 +128,10 @@ class NLLBInference(BaseInterface):
|
|
120 |
total_result += f'{file_name}\n\n'
|
121 |
total_result += f'{subtitle}'
|
122 |
|
123 |
-
|
|
|
124 |
except Exception as e:
|
125 |
-
|
126 |
finally:
|
127 |
self.release_cuda_memory()
|
128 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
|
34 |
src_lang: str,
|
35 |
tgt_lang: str,
|
36 |
add_timestamp: bool,
|
37 |
+
progress=gr.Progress()) -> list:
|
38 |
"""
|
39 |
Translate subtitle file from source language to target language
|
40 |
|
|
|
53 |
progress: gr.Progress
|
54 |
Indicator to show progress directly in gradio.
|
55 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
56 |
+
|
57 |
+
Returns
|
58 |
+
----------
|
59 |
+
A List of
|
60 |
+
String to return to gr.Textbox()
|
61 |
+
Files to return to gr.Files()
|
62 |
"""
|
63 |
try:
|
64 |
if model_size != self.current_model_size or self.model is None:
|
|
|
98 |
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
|
99 |
else:
|
100 |
output_path = os.path.join("outputs", "translations", f"{file_name}")
|
101 |
+
output_path += '.srt'
|
102 |
|
103 |
+
write_file(subtitle, output_path)
|
104 |
|
105 |
elif file_ext == ".vtt":
|
106 |
parsed_dicts = parse_vtt(file_path=file_path)
|
|
|
116 |
output_path = os.path.join("outputs", "translations", f"{file_name}-{timestamp}")
|
117 |
else:
|
118 |
output_path = os.path.join("outputs", "translations", f"{file_name}")
|
119 |
+
output_path += '.vtt'
|
120 |
|
121 |
+
write_file(subtitle, output_path)
|
122 |
|
123 |
files_info[file_name] = subtitle
|
124 |
|
|
|
128 |
total_result += f'{file_name}\n\n'
|
129 |
total_result += f'{subtitle}'
|
130 |
|
131 |
+
gr_str = f"Done! Subtitle is in the outputs/translation folder.\n\n{total_result}"
|
132 |
+
return [gr_str, output_path]
|
133 |
except Exception as e:
|
134 |
+
print(f"Error: {str(e)}")
|
135 |
finally:
|
136 |
self.release_cuda_memory()
|
137 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
modules/whisper_Inference.py
CHANGED
@@ -37,7 +37,7 @@ class WhisperInference(BaseInterface):
|
|
37 |
log_prob_threshold: float,
|
38 |
no_speech_threshold: float,
|
39 |
compute_type: str,
|
40 |
-
progress=gr.Progress()):
|
41 |
"""
|
42 |
Write subtitle file from Files
|
43 |
|
@@ -70,8 +70,13 @@ class WhisperInference(BaseInterface):
|
|
70 |
progress: gr.Progress
|
71 |
Indicator to show progress directly in gradio.
|
72 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
73 |
-
"""
|
74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
try:
|
76 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
77 |
|
@@ -91,16 +96,15 @@ class WhisperInference(BaseInterface):
|
|
91 |
)
|
92 |
progress(1, desc="Completed!")
|
93 |
|
94 |
-
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.
|
95 |
file_name = safe_filename(file_name)
|
96 |
-
subtitle = self.generate_and_write_file(
|
97 |
file_name=file_name,
|
98 |
transcribed_segments=result,
|
99 |
add_timestamp=add_timestamp,
|
100 |
file_format=file_format
|
101 |
)
|
102 |
-
|
103 |
-
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time}
|
104 |
|
105 |
total_result = ''
|
106 |
total_time = 0
|
@@ -110,10 +114,12 @@ class WhisperInference(BaseInterface):
|
|
110 |
total_result += f"{info['subtitle']}"
|
111 |
total_time += info["elapsed_time"]
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
except Exception as e:
|
115 |
print(f"Error transcribing file: {str(e)}")
|
116 |
-
return f"Error transcribing file: {str(e)}"
|
117 |
finally:
|
118 |
self.release_cuda_memory()
|
119 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
@@ -129,7 +135,7 @@ class WhisperInference(BaseInterface):
|
|
129 |
log_prob_threshold: float,
|
130 |
no_speech_threshold: float,
|
131 |
compute_type: str,
|
132 |
-
progress=gr.Progress()):
|
133 |
"""
|
134 |
Write subtitle file from Youtube
|
135 |
|
@@ -162,6 +168,12 @@ class WhisperInference(BaseInterface):
|
|
162 |
progress: gr.Progress
|
163 |
Indicator to show progress directly in gradio.
|
164 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
"""
|
166 |
try:
|
167 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
@@ -181,17 +193,17 @@ class WhisperInference(BaseInterface):
|
|
181 |
progress(1, desc="Completed!")
|
182 |
|
183 |
file_name = safe_filename(yt.title)
|
184 |
-
subtitle = self.generate_and_write_file(
|
185 |
file_name=file_name,
|
186 |
transcribed_segments=result,
|
187 |
add_timestamp=add_timestamp,
|
188 |
file_format=file_format
|
189 |
)
|
190 |
|
191 |
-
|
|
|
192 |
except Exception as e:
|
193 |
print(f"Error transcribing youtube video: {str(e)}")
|
194 |
-
return f"Error transcribing youtube video: {str(e)}"
|
195 |
finally:
|
196 |
try:
|
197 |
if 'yt' not in locals():
|
@@ -215,7 +227,7 @@ class WhisperInference(BaseInterface):
|
|
215 |
log_prob_threshold: float,
|
216 |
no_speech_threshold: float,
|
217 |
compute_type: str,
|
218 |
-
progress=gr.Progress()):
|
219 |
"""
|
220 |
Write subtitle file from microphone
|
221 |
|
@@ -246,8 +258,13 @@ class WhisperInference(BaseInterface):
|
|
246 |
progress: gr.Progress
|
247 |
Indicator to show progress directly in gradio.
|
248 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
249 |
-
"""
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
try:
|
252 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
253 |
|
@@ -261,17 +278,17 @@ class WhisperInference(BaseInterface):
|
|
261 |
progress=progress)
|
262 |
progress(1, desc="Completed!")
|
263 |
|
264 |
-
subtitle = self.generate_and_write_file(
|
265 |
file_name="Mic",
|
266 |
transcribed_segments=result,
|
267 |
add_timestamp=True,
|
268 |
file_format=file_format
|
269 |
)
|
270 |
|
271 |
-
|
|
|
272 |
except Exception as e:
|
273 |
print(f"Error transcribing mic: {str(e)}")
|
274 |
-
return f"Error transcribing mic: {str(e)}"
|
275 |
finally:
|
276 |
self.release_cuda_memory()
|
277 |
self.remove_input_files([micaudio])
|
@@ -377,16 +394,19 @@ class WhisperInference(BaseInterface):
|
|
377 |
|
378 |
if file_format == "SRT":
|
379 |
content = get_srt(transcribed_segments)
|
380 |
-
|
|
|
381 |
|
382 |
elif file_format == "WebVTT":
|
383 |
content = get_vtt(transcribed_segments)
|
384 |
-
|
|
|
385 |
|
386 |
elif file_format == "txt":
|
387 |
content = get_txt(transcribed_segments)
|
388 |
-
|
389 |
-
|
|
|
390 |
|
391 |
@staticmethod
|
392 |
def format_time(elapsed_time: float) -> str:
|
|
|
37 |
log_prob_threshold: float,
|
38 |
no_speech_threshold: float,
|
39 |
compute_type: str,
|
40 |
+
progress=gr.Progress()) -> list:
|
41 |
"""
|
42 |
Write subtitle file from Files
|
43 |
|
|
|
70 |
progress: gr.Progress
|
71 |
Indicator to show progress directly in gradio.
|
72 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
73 |
|
74 |
+
Returns
|
75 |
+
----------
|
76 |
+
A List of
|
77 |
+
String to return to gr.Textbox()
|
78 |
+
Files to return to gr.Files()
|
79 |
+
"""
|
80 |
try:
|
81 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
82 |
|
|
|
96 |
)
|
97 |
progress(1, desc="Completed!")
|
98 |
|
99 |
+
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.name))
|
100 |
file_name = safe_filename(file_name)
|
101 |
+
subtitle, file_path = self.generate_and_write_file(
|
102 |
file_name=file_name,
|
103 |
transcribed_segments=result,
|
104 |
add_timestamp=add_timestamp,
|
105 |
file_format=file_format
|
106 |
)
|
107 |
+
files_info[file_name] = {"subtitle": subtitle, "elapsed_time": elapsed_time, "path": file_path}
|
|
|
108 |
|
109 |
total_result = ''
|
110 |
total_time = 0
|
|
|
114 |
total_result += f"{info['subtitle']}"
|
115 |
total_time += info["elapsed_time"]
|
116 |
|
117 |
+
gr_str = f"Done in {self.format_time(total_time)}! Subtitle is in the outputs folder.\n\n{total_result}"
|
118 |
+
gr_file_path = [info['path'] for info in files_info.values()]
|
119 |
+
|
120 |
+
return [gr_str, gr_file_path]
|
121 |
except Exception as e:
|
122 |
print(f"Error transcribing file: {str(e)}")
|
|
|
123 |
finally:
|
124 |
self.release_cuda_memory()
|
125 |
self.remove_input_files([fileobj.name for fileobj in fileobjs])
|
|
|
135 |
log_prob_threshold: float,
|
136 |
no_speech_threshold: float,
|
137 |
compute_type: str,
|
138 |
+
progress=gr.Progress()) -> list:
|
139 |
"""
|
140 |
Write subtitle file from Youtube
|
141 |
|
|
|
168 |
progress: gr.Progress
|
169 |
Indicator to show progress directly in gradio.
|
170 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
171 |
+
|
172 |
+
Returns
|
173 |
+
----------
|
174 |
+
A List of
|
175 |
+
String to return to gr.Textbox()
|
176 |
+
Files to return to gr.Files()
|
177 |
"""
|
178 |
try:
|
179 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
|
|
193 |
progress(1, desc="Completed!")
|
194 |
|
195 |
file_name = safe_filename(yt.title)
|
196 |
+
subtitle, file_path = self.generate_and_write_file(
|
197 |
file_name=file_name,
|
198 |
transcribed_segments=result,
|
199 |
add_timestamp=add_timestamp,
|
200 |
file_format=file_format
|
201 |
)
|
202 |
|
203 |
+
gr_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
204 |
+
return [gr_str, file_path]
|
205 |
except Exception as e:
|
206 |
print(f"Error transcribing youtube video: {str(e)}")
|
|
|
207 |
finally:
|
208 |
try:
|
209 |
if 'yt' not in locals():
|
|
|
227 |
log_prob_threshold: float,
|
228 |
no_speech_threshold: float,
|
229 |
compute_type: str,
|
230 |
+
progress=gr.Progress()) -> list:
|
231 |
"""
|
232 |
Write subtitle file from microphone
|
233 |
|
|
|
258 |
progress: gr.Progress
|
259 |
Indicator to show progress directly in gradio.
|
260 |
I use a forked version of whisper for this. To see more info : https://github.com/jhj0517/jhj0517-whisper/tree/add-progress-callback
|
|
|
261 |
|
262 |
+
Returns
|
263 |
+
----------
|
264 |
+
A List of
|
265 |
+
String to return to gr.Textbox()
|
266 |
+
Files to return to gr.Files()
|
267 |
+
"""
|
268 |
try:
|
269 |
self.update_model_if_needed(model_size=model_size, compute_type=compute_type, progress=progress)
|
270 |
|
|
|
278 |
progress=progress)
|
279 |
progress(1, desc="Completed!")
|
280 |
|
281 |
+
subtitle, file_path = self.generate_and_write_file(
|
282 |
file_name="Mic",
|
283 |
transcribed_segments=result,
|
284 |
add_timestamp=True,
|
285 |
file_format=file_format
|
286 |
)
|
287 |
|
288 |
+
gr_str = f"Done in {self.format_time(elapsed_time)}! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
289 |
+
return [gr_str, file_path]
|
290 |
except Exception as e:
|
291 |
print(f"Error transcribing mic: {str(e)}")
|
|
|
292 |
finally:
|
293 |
self.release_cuda_memory()
|
294 |
self.remove_input_files([micaudio])
|
|
|
394 |
|
395 |
if file_format == "SRT":
|
396 |
content = get_srt(transcribed_segments)
|
397 |
+
output_path += '.srt'
|
398 |
+
write_file(content, output_path)
|
399 |
|
400 |
elif file_format == "WebVTT":
|
401 |
content = get_vtt(transcribed_segments)
|
402 |
+
output_path += '.vtt'
|
403 |
+
write_file(content, output_path)
|
404 |
|
405 |
elif file_format == "txt":
|
406 |
content = get_txt(transcribed_segments)
|
407 |
+
output_path += '.txt'
|
408 |
+
write_file(content, output_path)
|
409 |
+
return content, output_path
|
410 |
|
411 |
@staticmethod
|
412 |
def format_time(elapsed_time: float) -> str:
|