Spaces:
Running
Running
Damho Lee
commited on
Commit
·
6074f61
1
Parent(s):
9f11092
Add to remove input file(s) when finished
Browse files- modules/whisper_Inference.py +109 -88
modules/whisper_Inference.py
CHANGED
@@ -22,20 +22,80 @@ class WhisperInference:
|
|
22 |
def progress_callback(progress_value):
|
23 |
progress(progress_value, desc="Transcribing..")
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
|
|
34 |
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
translatable_model = ["large", "large-v1", "large-v2"]
|
41 |
if istranslate and self.current_model_size in translatable_model:
|
@@ -47,9 +107,7 @@ class WhisperInference:
|
|
47 |
|
48 |
progress(1, desc="Completed!")
|
49 |
|
50 |
-
file_name
|
51 |
-
file_name = file_name[:-9]
|
52 |
-
file_name = safe_filename(file_name)
|
53 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
54 |
output_path = f"outputs/{file_name}-{timestamp}"
|
55 |
|
@@ -60,57 +118,14 @@ class WhisperInference:
|
|
60 |
subtitle = get_vtt(result["segments"])
|
61 |
write_file(subtitle, f"{output_path}.vtt")
|
62 |
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
72 |
-
|
73 |
-
def transcribe_youtube(self, youtubelink,
|
74 |
-
model_size, lang, subformat, istranslate,
|
75 |
-
progress=gr.Progress()):
|
76 |
-
|
77 |
-
def progress_callback(progress_value):
|
78 |
-
progress(progress_value, desc="Transcribing..")
|
79 |
-
|
80 |
-
if model_size != self.current_model_size or self.model is None:
|
81 |
-
progress(0, desc="Initializing Model..")
|
82 |
-
self.current_model_size = model_size
|
83 |
-
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
|
84 |
-
|
85 |
-
if lang == "Automatic Detection":
|
86 |
-
lang = None
|
87 |
-
|
88 |
-
progress(0, desc="Loading Audio from Youtube..")
|
89 |
-
yt = get_ytdata(youtubelink)
|
90 |
-
audio = whisper.load_audio(get_ytaudio(yt))
|
91 |
-
|
92 |
-
translatable_model = ["large", "large-v1", "large-v2"]
|
93 |
-
if istranslate and self.current_model_size in translatable_model:
|
94 |
-
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
|
95 |
-
progress_callback=progress_callback)
|
96 |
-
else:
|
97 |
-
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
98 |
-
progress_callback=progress_callback)
|
99 |
-
|
100 |
-
progress(1, desc="Completed!")
|
101 |
-
|
102 |
-
file_name = safe_filename(yt.title)
|
103 |
-
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
104 |
-
output_path = f"outputs/{file_name}-{timestamp}"
|
105 |
-
|
106 |
-
if subformat == "SRT":
|
107 |
-
subtitle = get_srt(result["segments"])
|
108 |
-
write_file(subtitle, f"{output_path}.srt")
|
109 |
-
elif subformat == "WebVTT":
|
110 |
-
subtitle = get_vtt(result["segments"])
|
111 |
-
write_file(subtitle, f"{output_path}.vtt")
|
112 |
-
|
113 |
-
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
114 |
|
115 |
def transcribe_mic(self, micaudio,
|
116 |
model_size, lang, subformat, istranslate,
|
@@ -119,34 +134,40 @@ class WhisperInference:
|
|
119 |
def progress_callback(progress_value):
|
120 |
progress(progress_value, desc="Transcribing..")
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
|
140 |
-
|
141 |
|
142 |
-
|
143 |
-
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
22 |
def progress_callback(progress_value):
|
23 |
progress(progress_value, desc="Transcribing..")
|
24 |
|
25 |
+
try:
|
26 |
+
if model_size != self.current_model_size or self.model is None:
|
27 |
+
progress(0, desc="Initializing Model..")
|
28 |
+
self.current_model_size = model_size
|
29 |
+
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
|
30 |
+
|
31 |
+
if lang == "Automatic Detection":
|
32 |
+
lang = None
|
33 |
+
|
34 |
+
progress(0, desc="Loading Audio..")
|
35 |
+
|
36 |
+
files_info = {}
|
37 |
+
for fileobj in fileobjs:
|
38 |
+
|
39 |
+
audio = whisper.load_audio(fileobj.name)
|
40 |
+
|
41 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
42 |
+
if istranslate and self.current_model_size in translatable_model:
|
43 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False, task="translate",
|
44 |
+
progress_callback=progress_callback)
|
45 |
+
else:
|
46 |
+
result = self.model.transcribe(audio=audio, language=lang, verbose=False,
|
47 |
+
progress_callback=progress_callback)
|
48 |
+
|
49 |
+
progress(1, desc="Completed!")
|
50 |
+
|
51 |
+
file_name, file_ext = os.path.splitext(os.path.basename(fileobj.orig_name))
|
52 |
+
file_name = file_name[:-9]
|
53 |
+
file_name = safe_filename(file_name)
|
54 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
55 |
+
output_path = f"outputs/{file_name}-{timestamp}"
|
56 |
+
|
57 |
+
if subformat == "SRT":
|
58 |
+
subtitle = get_srt(result["segments"])
|
59 |
+
write_file(subtitle, f"{output_path}.srt")
|
60 |
+
elif subformat == "WebVTT":
|
61 |
+
subtitle = get_vtt(result["segments"])
|
62 |
+
write_file(subtitle, f"{output_path}.vtt")
|
63 |
+
|
64 |
+
files_info[file_name] = subtitle
|
65 |
+
|
66 |
+
total_result = ''
|
67 |
+
for file_name, subtitle in files_info.items():
|
68 |
+
total_result += '------------------------------------\n'
|
69 |
+
total_result += f'{file_name}\n\n'
|
70 |
+
total_result += f'{subtitle}'
|
71 |
+
|
72 |
+
return f"Done! Subtitle is in the outputs folder.\n\n{total_result}"
|
73 |
+
except Exception as e:
|
74 |
+
return str(e)
|
75 |
+
finally:
|
76 |
+
for fileobj in fileobjs:
|
77 |
+
if os.path.exists(fileobj.name):
|
78 |
+
os.remove(fileobj.name)
|
79 |
|
80 |
+
def transcribe_youtube(self, youtubelink,
|
81 |
+
model_size, lang, subformat, istranslate,
|
82 |
+
progress=gr.Progress()):
|
83 |
|
84 |
+
def progress_callback(progress_value):
|
85 |
+
progress(progress_value, desc="Transcribing..")
|
86 |
|
87 |
+
try:
|
88 |
+
if model_size != self.current_model_size or self.model is None:
|
89 |
+
progress(0, desc="Initializing Model..")
|
90 |
+
self.current_model_size = model_size
|
91 |
+
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
|
92 |
|
93 |
+
if lang == "Automatic Detection":
|
94 |
+
lang = None
|
95 |
+
|
96 |
+
progress(0, desc="Loading Audio from Youtube..")
|
97 |
+
yt = get_ytdata(youtubelink)
|
98 |
+
audio = whisper.load_audio(get_ytaudio(yt))
|
99 |
|
100 |
translatable_model = ["large", "large-v1", "large-v2"]
|
101 |
if istranslate and self.current_model_size in translatable_model:
|
|
|
107 |
|
108 |
progress(1, desc="Completed!")
|
109 |
|
110 |
+
file_name = safe_filename(yt.title)
|
|
|
|
|
111 |
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
112 |
output_path = f"outputs/{file_name}-{timestamp}"
|
113 |
|
|
|
118 |
subtitle = get_vtt(result["segments"])
|
119 |
write_file(subtitle, f"{output_path}.vtt")
|
120 |
|
121 |
+
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
122 |
+
except Exception as e:
|
123 |
+
return str(e)
|
124 |
+
finally:
|
125 |
+
yt = get_ytdata(youtubelink)
|
126 |
+
file_path = get_ytaudio(yt)
|
127 |
+
if os.path.exists(file_path):
|
128 |
+
os.remove(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def transcribe_mic(self, micaudio,
|
131 |
model_size, lang, subformat, istranslate,
|
|
|
134 |
def progress_callback(progress_value):
|
135 |
progress(progress_value, desc="Transcribing..")
|
136 |
|
137 |
+
try:
|
138 |
+
if model_size != self.current_model_size or self.model is None:
|
139 |
+
progress(0, desc="Initializing Model..")
|
140 |
+
self.current_model_size = model_size
|
141 |
+
self.model = whisper.load_model(name=model_size, download_root="models/Whisper")
|
142 |
|
143 |
+
if lang == "Automatic Detection":
|
144 |
+
lang = None
|
145 |
|
146 |
+
progress(0, desc="Loading Audio..")
|
147 |
|
148 |
+
translatable_model = ["large", "large-v1", "large-v2"]
|
149 |
+
if istranslate and self.current_model_size in translatable_model:
|
150 |
+
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False, task="translate",
|
151 |
+
progress_callback=progress_callback)
|
152 |
+
else:
|
153 |
+
result = self.model.transcribe(audio=micaudio, language=lang, verbose=False,
|
154 |
+
progress_callback=progress_callback)
|
155 |
|
156 |
+
progress(1, desc="Completed!")
|
157 |
|
158 |
+
timestamp = datetime.now().strftime("%m%d%H%M%S")
|
159 |
+
output_path = f"outputs/Mic-{timestamp}"
|
160 |
|
161 |
+
if subformat == "SRT":
|
162 |
+
subtitle = get_srt(result["segments"])
|
163 |
+
write_file(subtitle, f"{output_path}.srt")
|
164 |
+
elif subformat == "WebVTT":
|
165 |
+
subtitle = get_vtt(result["segments"])
|
166 |
+
write_file(subtitle, f"{output_path}.vtt")
|
167 |
|
168 |
+
return f"Done! Subtitle file is in the outputs folder.\n\n{subtitle}"
|
169 |
+
except Exception as e:
|
170 |
+
print(str(e))
|
171 |
+
finally:
|
172 |
+
if os.path.exists(micaudio):
|
173 |
+
os.remove(micaudio)
|