|
import gradio as gr |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import spaces |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/open-llama-Instruct") |
|
model = AutoModelForCausalLM.from_pretrained("diabolic6045/open-llama-Instruct") |
|
model.eval() |
|
if torch.cuda.is_available(): |
|
model.to('cuda') |
|
|
|
@Spaces.GPU() |
|
def respond( |
|
message, |
|
history, |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
conversation = f"System: {system_message}\n" |
|
for user_msg, bot_msg in history: |
|
conversation += f"User: {user_msg}\nAssistant: {bot_msg}\n" |
|
conversation += f"User: {message}\nAssistant:" |
|
|
|
|
|
inputs = tokenizer(conversation, return_tensors='pt', truncation=True, max_length=1024) |
|
if torch.cuda.is_available(): |
|
inputs = {k: v.to('cuda') for k, v in inputs.items()} |
|
|
|
|
|
output = model.generate( |
|
**inputs, |
|
max_new_tokens=max_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
|
|
response = response[len(conversation):].strip() |
|
return response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System Message"), |
|
gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max New Tokens"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"), |
|
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"), |
|
], |
|
title="Open Llama Chatbot", |
|
description="Chat with an AI assistant powered by the Open Llama Instruct model.", |
|
theme=gr.themes.Ocean(), |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|