Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
-
from
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
def respond(
|
11 |
message,
|
12 |
-
history
|
13 |
system_message,
|
14 |
max_tokens,
|
15 |
temperature,
|
16 |
top_p,
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
for
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System
|
50 |
-
gr.Slider(minimum=1, maximum=
|
51 |
-
gr.Slider(minimum=0.1, maximum=
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
|
|
|
|
|
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import spaces
|
5 |
+
|
6 |
+
# Load the tokenizer and model
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained("diabolic6045/open-llama-Instruct")
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("diabolic6045/open-llama-Instruct")
|
9 |
+
model.eval()
|
10 |
+
if torch.cuda.is_available():
|
11 |
+
model.to('cuda')
|
12 |
+
|
13 |
+
@Spaces.GPU()
|
14 |
def respond(
|
15 |
message,
|
16 |
+
history,
|
17 |
system_message,
|
18 |
max_tokens,
|
19 |
temperature,
|
20 |
top_p,
|
21 |
):
|
22 |
+
# Build the conversation history
|
23 |
+
conversation = f"System: {system_message}\n"
|
24 |
+
for user_msg, bot_msg in history:
|
25 |
+
conversation += f"User: {user_msg}\nAssistant: {bot_msg}\n"
|
26 |
+
conversation += f"User: {message}\nAssistant:"
|
27 |
+
|
28 |
+
# Tokenize the input
|
29 |
+
inputs = tokenizer(conversation, return_tensors='pt', truncation=True, max_length=1024)
|
30 |
+
if torch.cuda.is_available():
|
31 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
32 |
+
|
33 |
+
# Generate the response
|
34 |
+
output = model.generate(
|
35 |
+
**inputs,
|
36 |
+
max_new_tokens=max_tokens,
|
37 |
+
do_sample=True,
|
38 |
temperature=temperature,
|
39 |
top_p=top_p,
|
40 |
+
pad_token_id=tokenizer.eos_token_id
|
41 |
+
)
|
42 |
+
response = tokenizer.decode(output[0], skip_special_tokens=True)
|
43 |
|
44 |
+
# Extract the assistant's reply
|
45 |
+
response = response[len(conversation):].strip()
|
46 |
+
return response
|
47 |
|
48 |
+
# Create the Gradio interface with the Ocean theme
|
|
|
|
|
|
|
49 |
demo = gr.ChatInterface(
|
50 |
+
fn=respond,
|
51 |
additional_inputs=[
|
52 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System Message"),
|
53 |
+
gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max New Tokens"),
|
54 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"),
|
55 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
],
|
57 |
+
title="Open Llama Chatbot",
|
58 |
+
description="Chat with an AI assistant powered by the Open Llama Instruct model.",
|
59 |
+
theme=gr.themes.Ocean(),
|
60 |
)
|
61 |
|
|
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|