import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import spaces # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained("diabolic6045/open-llama-Instruct") model = AutoModelForCausalLM.from_pretrained("diabolic6045/open-llama-Instruct") model.eval() if torch.cuda.is_available(): model.to('cuda') @Spaces.GPU() def respond( message, history, system_message, max_tokens, temperature, top_p, ): # Build the conversation history conversation = f"System: {system_message}\n" for user_msg, bot_msg in history: conversation += f"User: {user_msg}\nAssistant: {bot_msg}\n" conversation += f"User: {message}\nAssistant:" # Tokenize the input inputs = tokenizer(conversation, return_tensors='pt', truncation=True, max_length=1024) if torch.cuda.is_available(): inputs = {k: v.to('cuda') for k, v in inputs.items()} # Generate the response output = model.generate( **inputs, max_new_tokens=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id ) response = tokenizer.decode(output[0], skip_special_tokens=True) # Extract the assistant's reply response = response[len(conversation):].strip() return response # Create the Gradio interface with the Ocean theme demo = gr.ChatInterface( fn=respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System Message"), gr.Slider(minimum=1, maximum=512, value=256, step=1, label="Max New Tokens"), gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.05, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.05, label="Top-p (Nucleus Sampling)"), ], title="Open Llama Chatbot", description="Chat with an AI assistant powered by the Open Llama Instruct model.", theme=gr.themes.Ocean(), ) if __name__ == "__main__": demo.launch()