|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
import torch |
|
import json |
|
import os |
|
from pathlib import Path |
|
from datetime import datetime |
|
import edge_tts |
|
import asyncio |
|
import base64 |
|
import streamlit.components.v1 as components |
|
|
|
|
|
st.set_page_config( |
|
page_title="Video Search with Speech", |
|
page_icon="π₯", |
|
layout="wide" |
|
) |
|
|
|
|
|
if 'search_history' not in st.session_state: |
|
st.session_state['search_history'] = [] |
|
if 'last_voice_input' not in st.session_state: |
|
st.session_state['last_voice_input'] = "" |
|
|
|
|
|
speech_component = components.declare_component("speech_recognition", path="mycomponent") |
|
|
|
class VideoSearch: |
|
def __init__(self): |
|
self.text_model = SentenceTransformer('all-MiniLM-L6-v2') |
|
self.load_dataset() |
|
|
|
def fetch_dataset_rows(self): |
|
"""Fetch dataset from Hugging Face API""" |
|
import requests |
|
|
|
|
|
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train" |
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
data = response.json() |
|
|
|
rows = data.get('rows', []) |
|
return pd.DataFrame(rows) |
|
else: |
|
st.error(f"Error fetching dataset: {response.status_code}") |
|
return None |
|
|
|
def get_dataset_splits(self): |
|
"""Get available dataset splits""" |
|
import requests |
|
|
|
url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal" |
|
response = requests.get(url) |
|
|
|
if response.status_code == 200: |
|
splits_data = response.json() |
|
return splits_data |
|
else: |
|
st.error(f"Error fetching splits: {response.status_code}") |
|
return None |
|
|
|
def load_dataset(self): |
|
"""Load the Omega Multimodal dataset""" |
|
try: |
|
|
|
self.dataset = self.fetch_dataset_rows() |
|
|
|
if self.dataset is not None: |
|
|
|
splits_info = self.get_dataset_splits() |
|
if splits_info: |
|
st.sidebar.write("Available splits:", splits_info) |
|
|
|
self.prepare_features() |
|
else: |
|
self.create_dummy_data() |
|
|
|
except Exception as e: |
|
st.error(f"Error loading dataset: {e}") |
|
self.create_dummy_data() |
|
|
|
def prepare_features(self): |
|
"""Prepare and cache embeddings""" |
|
|
|
try: |
|
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e |
|
for e in self.dataset.video_embed]) |
|
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e |
|
for e in self.dataset.description_embed]) |
|
except Exception as e: |
|
st.error(f"Error preparing features: {e}") |
|
|
|
num_rows = len(self.dataset) |
|
self.video_embeds = np.random.randn(num_rows, 384) |
|
self.text_embeds = np.random.randn(num_rows, 384) |
|
|
|
def create_dummy_data(self): |
|
"""Create dummy data for testing""" |
|
self.dataset = pd.DataFrame({ |
|
'video_id': [f'video_{i}' for i in range(10)], |
|
'youtube_id': ['dQw4w9WgXcQ'] * 10, |
|
'description': ['Sample video description'] * 10, |
|
'views': [1000] * 10, |
|
'start_time': [0] * 10, |
|
'end_time': [60] * 10 |
|
}) |
|
|
|
self.video_embeds = np.random.randn(10, 384) |
|
self.text_embeds = np.random.randn(10, 384) |
|
|
|
|
|
def search(self, query, top_k=5): |
|
"""Search videos using query""" |
|
query_embedding = self.text_model.encode([query])[0] |
|
|
|
|
|
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0] |
|
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0] |
|
|
|
|
|
combined_sims = 0.5 * video_sims + 0.5 * text_sims |
|
|
|
|
|
top_indices = np.argsort(combined_sims)[-top_k:][::-1] |
|
|
|
results = [] |
|
for idx in top_indices: |
|
results.append({ |
|
'video_id': self.dataset.iloc[idx]['video_id'], |
|
'youtube_id': self.dataset.iloc[idx]['youtube_id'], |
|
'description': self.dataset.iloc[idx]['description'], |
|
'start_time': self.dataset.iloc[idx]['start_time'], |
|
'end_time': self.dataset.iloc[idx]['end_time'], |
|
'relevance_score': float(combined_sims[idx]), |
|
'views': self.dataset.iloc[idx]['views'] |
|
}) |
|
|
|
return results |
|
|
|
async def generate_speech(text, voice="en-US-AriaNeural"): |
|
"""Generate speech using Edge TTS""" |
|
if not text.strip(): |
|
return None |
|
|
|
communicate = edge_tts.Communicate(text, voice) |
|
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3" |
|
await communicate.save(audio_file) |
|
return audio_file |
|
|
|
def main(): |
|
st.title("π₯ Video Search with Speech Recognition") |
|
|
|
|
|
search = VideoSearch() |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "πΎ History"]) |
|
|
|
with tab1: |
|
st.subheader("Search Videos") |
|
|
|
|
|
query = st.text_input("Enter your search query:") |
|
col1, col2 = st.columns(2) |
|
|
|
with col1: |
|
search_button = st.button("π Search") |
|
with col2: |
|
num_results = st.slider("Number of results:", 1, 10, 5) |
|
|
|
if search_button and query: |
|
results = search.search(query, num_results) |
|
st.session_state['search_history'].append({ |
|
'query': query, |
|
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
'results': results |
|
}) |
|
|
|
for i, result in enumerate(results, 1): |
|
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1): |
|
cols = st.columns([2, 1]) |
|
|
|
with cols[0]: |
|
st.markdown(f"**Full Description:**") |
|
st.write(result['description']) |
|
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s") |
|
st.markdown(f"**Views:** {result['views']:,}") |
|
|
|
with cols[1]: |
|
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}") |
|
if result['youtube_id']: |
|
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") |
|
|
|
|
|
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"): |
|
summary = f"Video summary: {result['description'][:200]}" |
|
audio_file = asyncio.run(generate_speech(summary)) |
|
if audio_file: |
|
st.audio(audio_file) |
|
|
|
if os.path.exists(audio_file): |
|
os.remove(audio_file) |
|
|
|
with tab2: |
|
st.subheader("Voice Input") |
|
|
|
|
|
voice_input = speech_component() |
|
|
|
if voice_input and voice_input != st.session_state['last_voice_input']: |
|
st.session_state['last_voice_input'] = voice_input |
|
st.markdown("**Transcribed Text:**") |
|
st.write(voice_input) |
|
|
|
if st.button("π Search Videos"): |
|
results = search.search(voice_input, num_results) |
|
st.session_state['search_history'].append({ |
|
'query': voice_input, |
|
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"), |
|
'results': results |
|
}) |
|
for i, result in enumerate(results, 1): |
|
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1): |
|
st.write(result['description']) |
|
if result['youtube_id']: |
|
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") |
|
|
|
with tab3: |
|
st.subheader("Search History") |
|
|
|
if st.button("ποΈ Clear History"): |
|
st.session_state['search_history'] = [] |
|
st.experimental_rerun() |
|
|
|
for i, entry in enumerate(reversed(st.session_state['search_history'])): |
|
with st.expander(f"Query: {entry['query']} ({entry['timestamp']})", expanded=False): |
|
st.markdown(f"**Original Query:** {entry['query']}") |
|
st.markdown(f"**Time:** {entry['timestamp']}") |
|
|
|
for j, result in enumerate(entry['results'], 1): |
|
st.markdown(f"**Result {j}:**") |
|
st.write(result['description']) |
|
if result['youtube_id']: |
|
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}") |
|
|
|
|
|
with st.sidebar: |
|
st.subheader("βοΈ Configuration") |
|
st.markdown("**Video Search Settings**") |
|
st.slider("Default Results:", 1, 10, 5, key="default_results") |
|
|
|
st.markdown("**Voice Settings**") |
|
st.selectbox("TTS Voice:", |
|
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"], |
|
key="tts_voice") |
|
|
|
st.markdown("**Model Settings**") |
|
st.selectbox("Text Embedding Model:", |
|
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"], |
|
key="embedding_model") |
|
|
|
if st.button("π₯ Download Search History"): |
|
|
|
history_json = json.dumps(st.session_state['search_history'], indent=2) |
|
b64 = base64.b64encode(history_json.encode()).decode() |
|
href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>' |
|
st.markdown(href, unsafe_allow_html=True) |
|
|
|
if __name__ == "__main__": |
|
main() |