Update app.py
Browse files
app.py
CHANGED
@@ -11,8 +11,6 @@ from datetime import datetime
|
|
11 |
import edge_tts
|
12 |
import asyncio
|
13 |
import base64
|
14 |
-
from openai import OpenAI
|
15 |
-
import anthropic
|
16 |
import streamlit.components.v1 as components
|
17 |
|
18 |
# Page configuration
|
@@ -23,17 +21,11 @@ st.set_page_config(
|
|
23 |
)
|
24 |
|
25 |
# Initialize session state
|
26 |
-
if 'messages' not in st.session_state:
|
27 |
-
st.session_state['messages'] = []
|
28 |
if 'search_history' not in st.session_state:
|
29 |
st.session_state['search_history'] = []
|
30 |
if 'last_voice_input' not in st.session_state:
|
31 |
st.session_state['last_voice_input'] = ""
|
32 |
|
33 |
-
# Load environment variables
|
34 |
-
openai_client = OpenAI()
|
35 |
-
claude_client = anthropic.Anthropic()
|
36 |
-
|
37 |
# Initialize the speech component
|
38 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
39 |
|
@@ -42,12 +34,53 @@ class VideoSearch:
|
|
42 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
43 |
self.load_dataset()
|
44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
def load_dataset(self):
|
46 |
"""Load the Omega Multimodal dataset"""
|
47 |
try:
|
48 |
-
#
|
49 |
-
self.dataset =
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
except Exception as e:
|
52 |
st.error(f"Error loading dataset: {e}")
|
53 |
self.create_dummy_data()
|
@@ -55,16 +88,23 @@ class VideoSearch:
|
|
55 |
def prepare_features(self):
|
56 |
"""Prepare and cache embeddings"""
|
57 |
# Convert string representations of embeddings back to numpy arrays
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
def create_dummy_data(self):
|
64 |
"""Create dummy data for testing"""
|
65 |
self.dataset = pd.DataFrame({
|
66 |
'video_id': [f'video_{i}' for i in range(10)],
|
67 |
-
'youtube_id': ['dQw4w9WgXcQ'] * 10,
|
68 |
'description': ['Sample video description'] * 10,
|
69 |
'views': [1000] * 10,
|
70 |
'start_time': [0] * 10,
|
@@ -74,6 +114,7 @@ class VideoSearch:
|
|
74 |
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
75 |
self.text_embeds = np.random.randn(10, 384)
|
76 |
|
|
|
77 |
def search(self, query, top_k=5):
|
78 |
"""Search videos using query"""
|
79 |
query_embedding = self.text_model.encode([query])[0]
|
@@ -112,31 +153,6 @@ async def generate_speech(text, voice="en-US-AriaNeural"):
|
|
112 |
await communicate.save(audio_file)
|
113 |
return audio_file
|
114 |
|
115 |
-
def process_with_gpt4(prompt):
|
116 |
-
"""Process text with GPT-4"""
|
117 |
-
try:
|
118 |
-
response = openai_client.chat.completions.create(
|
119 |
-
model="gpt-4",
|
120 |
-
messages=[{"role": "user", "content": prompt}]
|
121 |
-
)
|
122 |
-
return response.choices[0].message.content
|
123 |
-
except Exception as e:
|
124 |
-
st.error(f"Error with GPT-4: {e}")
|
125 |
-
return None
|
126 |
-
|
127 |
-
def process_with_claude(prompt):
|
128 |
-
"""Process text with Claude"""
|
129 |
-
try:
|
130 |
-
response = claude_client.messages.create(
|
131 |
-
model="claude-3-sonnet-20240229",
|
132 |
-
max_tokens=1000,
|
133 |
-
messages=[{"role": "user", "content": prompt}]
|
134 |
-
)
|
135 |
-
return response.content[0].text
|
136 |
-
except Exception as e:
|
137 |
-
st.error(f"Error with Claude: {e}")
|
138 |
-
return None
|
139 |
-
|
140 |
def main():
|
141 |
st.title("🎥 Video Search with Speech Recognition")
|
142 |
|
@@ -202,34 +218,18 @@ def main():
|
|
202 |
st.markdown("**Transcribed Text:**")
|
203 |
st.write(voice_input)
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
})
|
214 |
-
|
215 |
-
|
216 |
-
st.
|
217 |
-
if result['youtube_id']:
|
218 |
-
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
219 |
-
|
220 |
-
with cols[1]:
|
221 |
-
if st.button("🤖 Process with GPT-4"):
|
222 |
-
gpt_response = process_with_gpt4(voice_input)
|
223 |
-
if gpt_response:
|
224 |
-
st.markdown("**GPT-4 Response:**")
|
225 |
-
st.write(gpt_response)
|
226 |
-
|
227 |
-
with cols[2]:
|
228 |
-
if st.button("🧠 Process with Claude"):
|
229 |
-
claude_response = process_with_claude(voice_input)
|
230 |
-
if claude_response:
|
231 |
-
st.markdown("**Claude Response:**")
|
232 |
-
st.write(claude_response)
|
233 |
|
234 |
with tab3:
|
235 |
st.subheader("Search History")
|
|
|
11 |
import edge_tts
|
12 |
import asyncio
|
13 |
import base64
|
|
|
|
|
14 |
import streamlit.components.v1 as components
|
15 |
|
16 |
# Page configuration
|
|
|
21 |
)
|
22 |
|
23 |
# Initialize session state
|
|
|
|
|
24 |
if 'search_history' not in st.session_state:
|
25 |
st.session_state['search_history'] = []
|
26 |
if 'last_voice_input' not in st.session_state:
|
27 |
st.session_state['last_voice_input'] = ""
|
28 |
|
|
|
|
|
|
|
|
|
29 |
# Initialize the speech component
|
30 |
speech_component = components.declare_component("speech_recognition", path="mycomponent")
|
31 |
|
|
|
34 |
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
|
35 |
self.load_dataset()
|
36 |
|
37 |
+
def fetch_dataset_rows(self):
|
38 |
+
"""Fetch dataset from Hugging Face API"""
|
39 |
+
import requests
|
40 |
+
|
41 |
+
# Fetch first rows from the dataset
|
42 |
+
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
43 |
+
response = requests.get(url)
|
44 |
+
|
45 |
+
if response.status_code == 200:
|
46 |
+
data = response.json()
|
47 |
+
# Extract the rows from the response
|
48 |
+
rows = data.get('rows', [])
|
49 |
+
return pd.DataFrame(rows)
|
50 |
+
else:
|
51 |
+
st.error(f"Error fetching dataset: {response.status_code}")
|
52 |
+
return None
|
53 |
+
|
54 |
+
def get_dataset_splits(self):
|
55 |
+
"""Get available dataset splits"""
|
56 |
+
import requests
|
57 |
+
|
58 |
+
url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal"
|
59 |
+
response = requests.get(url)
|
60 |
+
|
61 |
+
if response.status_code == 200:
|
62 |
+
splits_data = response.json()
|
63 |
+
return splits_data
|
64 |
+
else:
|
65 |
+
st.error(f"Error fetching splits: {response.status_code}")
|
66 |
+
return None
|
67 |
+
|
68 |
def load_dataset(self):
|
69 |
"""Load the Omega Multimodal dataset"""
|
70 |
try:
|
71 |
+
# Fetch dataset from Hugging Face API
|
72 |
+
self.dataset = self.fetch_dataset_rows()
|
73 |
+
|
74 |
+
if self.dataset is not None:
|
75 |
+
# Get dataset splits info
|
76 |
+
splits_info = self.get_dataset_splits()
|
77 |
+
if splits_info:
|
78 |
+
st.sidebar.write("Available splits:", splits_info)
|
79 |
+
|
80 |
+
self.prepare_features()
|
81 |
+
else:
|
82 |
+
self.create_dummy_data()
|
83 |
+
|
84 |
except Exception as e:
|
85 |
st.error(f"Error loading dataset: {e}")
|
86 |
self.create_dummy_data()
|
|
|
88 |
def prepare_features(self):
|
89 |
"""Prepare and cache embeddings"""
|
90 |
# Convert string representations of embeddings back to numpy arrays
|
91 |
+
try:
|
92 |
+
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
93 |
+
for e in self.dataset.video_embed])
|
94 |
+
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
95 |
+
for e in self.dataset.description_embed])
|
96 |
+
except Exception as e:
|
97 |
+
st.error(f"Error preparing features: {e}")
|
98 |
+
# Create random embeddings as fallback
|
99 |
+
num_rows = len(self.dataset)
|
100 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
101 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
102 |
|
103 |
def create_dummy_data(self):
|
104 |
"""Create dummy data for testing"""
|
105 |
self.dataset = pd.DataFrame({
|
106 |
'video_id': [f'video_{i}' for i in range(10)],
|
107 |
+
'youtube_id': ['dQw4w9WgXcQ'] * 10,
|
108 |
'description': ['Sample video description'] * 10,
|
109 |
'views': [1000] * 10,
|
110 |
'start_time': [0] * 10,
|
|
|
114 |
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
|
115 |
self.text_embeds = np.random.randn(10, 384)
|
116 |
|
117 |
+
|
118 |
def search(self, query, top_k=5):
|
119 |
"""Search videos using query"""
|
120 |
query_embedding = self.text_model.encode([query])[0]
|
|
|
153 |
await communicate.save(audio_file)
|
154 |
return audio_file
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
def main():
|
157 |
st.title("🎥 Video Search with Speech Recognition")
|
158 |
|
|
|
218 |
st.markdown("**Transcribed Text:**")
|
219 |
st.write(voice_input)
|
220 |
|
221 |
+
if st.button("🔍 Search Videos"):
|
222 |
+
results = search.search(voice_input, num_results)
|
223 |
+
st.session_state['search_history'].append({
|
224 |
+
'query': voice_input,
|
225 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
|
226 |
+
'results': results
|
227 |
+
})
|
228 |
+
for i, result in enumerate(results, 1):
|
229 |
+
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
|
230 |
+
st.write(result['description'])
|
231 |
+
if result['youtube_id']:
|
232 |
+
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
with tab3:
|
235 |
st.subheader("Search History")
|