File size: 11,116 Bytes
90807c0 cc67713 90807c0 cc67713 90807c0 cc67713 90807c0 cc67713 90807c0 cc67713 90807c0 cc67713 90807c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import streamlit.components.v1 as components
# Page configuration
st.set_page_config(
page_title="Video Search with Speech",
page_icon="π₯",
layout="wide"
)
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
# Initialize the speech component
speech_component = components.declare_component("speech_recognition", path="mycomponent")
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.load_dataset()
def fetch_dataset_rows(self):
"""Fetch dataset from Hugging Face API"""
import requests
# Fetch first rows from the dataset
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
# Extract the rows from the response
rows = data.get('rows', [])
return pd.DataFrame(rows)
else:
st.error(f"Error fetching dataset: {response.status_code}")
return None
def get_dataset_splits(self):
"""Get available dataset splits"""
import requests
url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal"
response = requests.get(url)
if response.status_code == 200:
splits_data = response.json()
return splits_data
else:
st.error(f"Error fetching splits: {response.status_code}")
return None
def load_dataset(self):
"""Load the Omega Multimodal dataset"""
try:
# Fetch dataset from Hugging Face API
self.dataset = self.fetch_dataset_rows()
if self.dataset is not None:
# Get dataset splits info
splits_info = self.get_dataset_splits()
if splits_info:
st.sidebar.write("Available splits:", splits_info)
self.prepare_features()
else:
self.create_dummy_data()
except Exception as e:
st.error(f"Error loading dataset: {e}")
self.create_dummy_data()
def prepare_features(self):
"""Prepare and cache embeddings"""
# Convert string representations of embeddings back to numpy arrays
try:
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
for e in self.dataset.video_embed])
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
for e in self.dataset.description_embed])
except Exception as e:
st.error(f"Error preparing features: {e}")
# Create random embeddings as fallback
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def create_dummy_data(self):
"""Create dummy data for testing"""
self.dataset = pd.DataFrame({
'video_id': [f'video_{i}' for i in range(10)],
'youtube_id': ['dQw4w9WgXcQ'] * 10,
'description': ['Sample video description'] * 10,
'views': [1000] * 10,
'start_time': [0] * 10,
'end_time': [60] * 10
})
# Create dummy embeddings
self.video_embeds = np.random.randn(10, 384) # Match model dimensions
self.text_embeds = np.random.randn(10, 384)
def search(self, query, top_k=5):
"""Search videos using query"""
query_embedding = self.text_model.encode([query])[0]
# Compute similarities
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
# Combine similarities
combined_sims = 0.5 * video_sims + 0.5 * text_sims
# Get top results
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
for idx in top_indices:
results.append({
'video_id': self.dataset.iloc[idx]['video_id'],
'youtube_id': self.dataset.iloc[idx]['youtube_id'],
'description': self.dataset.iloc[idx]['description'],
'start_time': self.dataset.iloc[idx]['start_time'],
'end_time': self.dataset.iloc[idx]['end_time'],
'relevance_score': float(combined_sims[idx]),
'views': self.dataset.iloc[idx]['views']
})
return results
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech using Edge TTS"""
if not text.strip():
return None
communicate = edge_tts.Communicate(text, voice)
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(audio_file)
return audio_file
def main():
st.title("π₯ Video Search with Speech Recognition")
# Initialize video search
search = VideoSearch()
# Create tabs
tab1, tab2, tab3 = st.tabs(["π Search", "ποΈ Voice Input", "πΎ History"])
with tab1:
st.subheader("Search Videos")
# Text search
query = st.text_input("Enter your search query:")
col1, col2 = st.columns(2)
with col1:
search_button = st.button("π Search")
with col2:
num_results = st.slider("Number of results:", 1, 10, 5)
if search_button and query:
results = search.search(query, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
cols = st.columns([2, 1])
with cols[0]:
st.markdown(f"**Full Description:**")
st.write(result['description'])
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result['youtube_id']:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
# Generate audio summary
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"):
summary = f"Video summary: {result['description'][:200]}"
audio_file = asyncio.run(generate_speech(summary))
if audio_file:
st.audio(audio_file)
# Cleanup audio file
if os.path.exists(audio_file):
os.remove(audio_file)
with tab2:
st.subheader("Voice Input")
# Speech recognition component
voice_input = speech_component()
if voice_input and voice_input != st.session_state['last_voice_input']:
st.session_state['last_voice_input'] = voice_input
st.markdown("**Transcribed Text:**")
st.write(voice_input)
if st.button("π Search Videos"):
results = search.search(voice_input, num_results)
st.session_state['search_history'].append({
'query': voice_input,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
st.write(result['description'])
if result['youtube_id']:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
with tab3:
st.subheader("Search History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
for i, entry in enumerate(reversed(st.session_state['search_history'])):
with st.expander(f"Query: {entry['query']} ({entry['timestamp']})", expanded=False):
st.markdown(f"**Original Query:** {entry['query']}")
st.markdown(f"**Time:** {entry['timestamp']}")
for j, result in enumerate(entry['results'], 1):
st.markdown(f"**Result {j}:**")
st.write(result['description'])
if result['youtube_id']:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
# Sidebar configuration
with st.sidebar:
st.subheader("βοΈ Configuration")
st.markdown("**Video Search Settings**")
st.slider("Default Results:", 1, 10, 5, key="default_results")
st.markdown("**Voice Settings**")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
st.markdown("**Model Settings**")
st.selectbox("Text Embedding Model:",
["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"],
key="embedding_model")
if st.button("π₯ Download Search History"):
# Convert history to JSON
history_json = json.dumps(st.session_state['search_history'], indent=2)
b64 = base64.b64encode(history_json.encode()).decode()
href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>'
st.markdown(href, unsafe_allow_html=True)
if __name__ == "__main__":
main() |