File size: 11,116 Bytes
90807c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc67713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90807c0
 
 
cc67713
 
 
 
 
 
 
 
 
 
 
 
 
90807c0
 
 
 
 
 
 
cc67713
 
 
 
 
 
 
 
 
 
 
90807c0
 
 
 
 
cc67713
90807c0
 
 
 
 
 
 
 
 
cc67713
90807c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc67713
 
 
 
 
 
 
 
 
 
 
 
90807c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import streamlit.components.v1 as components

# Page configuration
st.set_page_config(
    page_title="Video Search with Speech",
    page_icon="πŸŽ₯",
    layout="wide"
)

# Initialize session state
if 'search_history' not in st.session_state:
    st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
    st.session_state['last_voice_input'] = ""

# Initialize the speech component
speech_component = components.declare_component("speech_recognition", path="mycomponent")

class VideoSearch:
    def __init__(self):
        self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
        self.load_dataset()
        
    def fetch_dataset_rows(self):
        """Fetch dataset from Hugging Face API"""
        import requests
        
        # Fetch first rows from the dataset
        url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
        response = requests.get(url)
        
        if response.status_code == 200:
            data = response.json()
            # Extract the rows from the response
            rows = data.get('rows', [])
            return pd.DataFrame(rows)
        else:
            st.error(f"Error fetching dataset: {response.status_code}")
            return None
            
    def get_dataset_splits(self):
        """Get available dataset splits"""
        import requests
        
        url = "https://datasets-server.huggingface.co/splits?dataset=omegalabsinc%2Fomega-multimodal"
        response = requests.get(url)
        
        if response.status_code == 200:
            splits_data = response.json()
            return splits_data
        else:
            st.error(f"Error fetching splits: {response.status_code}")
            return None
        
    def load_dataset(self):
        """Load the Omega Multimodal dataset"""
        try:
            # Fetch dataset from Hugging Face API
            self.dataset = self.fetch_dataset_rows()
            
            if self.dataset is not None:
                # Get dataset splits info
                splits_info = self.get_dataset_splits()
                if splits_info:
                    st.sidebar.write("Available splits:", splits_info)
                
                self.prepare_features()
            else:
                self.create_dummy_data()
                
        except Exception as e:
            st.error(f"Error loading dataset: {e}")
            self.create_dummy_data()
    
    def prepare_features(self):
        """Prepare and cache embeddings"""
        # Convert string representations of embeddings back to numpy arrays
        try:
            self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e 
                                        for e in self.dataset.video_embed])
            self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e 
                                       for e in self.dataset.description_embed])
        except Exception as e:
            st.error(f"Error preparing features: {e}")
            # Create random embeddings as fallback
            num_rows = len(self.dataset)
            self.video_embeds = np.random.randn(num_rows, 384)
            self.text_embeds = np.random.randn(num_rows, 384)
    
    def create_dummy_data(self):
        """Create dummy data for testing"""
        self.dataset = pd.DataFrame({
            'video_id': [f'video_{i}' for i in range(10)],
            'youtube_id': ['dQw4w9WgXcQ'] * 10,
            'description': ['Sample video description'] * 10,
            'views': [1000] * 10,
            'start_time': [0] * 10,
            'end_time': [60] * 10
        })
        # Create dummy embeddings
        self.video_embeds = np.random.randn(10, 384)  # Match model dimensions
        self.text_embeds = np.random.randn(10, 384)


    def search(self, query, top_k=5):
        """Search videos using query"""
        query_embedding = self.text_model.encode([query])[0]
        
        # Compute similarities
        video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
        text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
        
        # Combine similarities
        combined_sims = 0.5 * video_sims + 0.5 * text_sims
        
        # Get top results
        top_indices = np.argsort(combined_sims)[-top_k:][::-1]
        
        results = []
        for idx in top_indices:
            results.append({
                'video_id': self.dataset.iloc[idx]['video_id'],
                'youtube_id': self.dataset.iloc[idx]['youtube_id'],
                'description': self.dataset.iloc[idx]['description'],
                'start_time': self.dataset.iloc[idx]['start_time'],
                'end_time': self.dataset.iloc[idx]['end_time'],
                'relevance_score': float(combined_sims[idx]),
                'views': self.dataset.iloc[idx]['views']
            })
        
        return results

async def generate_speech(text, voice="en-US-AriaNeural"):
    """Generate speech using Edge TTS"""
    if not text.strip():
        return None
    
    communicate = edge_tts.Communicate(text, voice)
    audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
    await communicate.save(audio_file)
    return audio_file

def main():
    st.title("πŸŽ₯ Video Search with Speech Recognition")
    
    # Initialize video search
    search = VideoSearch()
    
    # Create tabs
    tab1, tab2, tab3 = st.tabs(["πŸ” Search", "πŸŽ™οΈ Voice Input", "πŸ’Ύ History"])
    
    with tab1:
        st.subheader("Search Videos")
        
        # Text search
        query = st.text_input("Enter your search query:")
        col1, col2 = st.columns(2)
        
        with col1:
            search_button = st.button("πŸ” Search")
        with col2:
            num_results = st.slider("Number of results:", 1, 10, 5)
            
        if search_button and query:
            results = search.search(query, num_results)
            st.session_state['search_history'].append({
                'query': query,
                'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                'results': results
            })
            
            for i, result in enumerate(results, 1):
                with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
                    cols = st.columns([2, 1])
                    
                    with cols[0]:
                        st.markdown(f"**Full Description:**")
                        st.write(result['description'])
                        st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
                        st.markdown(f"**Views:** {result['views']:,}")
                    
                    with cols[1]:
                        st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
                        if result['youtube_id']:
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
                        
                        # Generate audio summary
                        if st.button(f"πŸ”Š Generate Audio Summary", key=f"audio_{i}"):
                            summary = f"Video summary: {result['description'][:200]}"
                            audio_file = asyncio.run(generate_speech(summary))
                            if audio_file:
                                st.audio(audio_file)
                                # Cleanup audio file
                                if os.path.exists(audio_file):
                                    os.remove(audio_file)

    with tab2:
        st.subheader("Voice Input")
        
        # Speech recognition component
        voice_input = speech_component()
        
        if voice_input and voice_input != st.session_state['last_voice_input']:
            st.session_state['last_voice_input'] = voice_input
            st.markdown("**Transcribed Text:**")
            st.write(voice_input)
            
            if st.button("πŸ” Search Videos"):
                results = search.search(voice_input, num_results)
                st.session_state['search_history'].append({
                    'query': voice_input,
                    'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
                    'results': results
                })
                for i, result in enumerate(results, 1):
                    with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
                        st.write(result['description'])
                        if result['youtube_id']:
                            st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")

    with tab3:
        st.subheader("Search History")
        
        if st.button("πŸ—‘οΈ Clear History"):
            st.session_state['search_history'] = []
            st.experimental_rerun()
            
        for i, entry in enumerate(reversed(st.session_state['search_history'])):
            with st.expander(f"Query: {entry['query']} ({entry['timestamp']})", expanded=False):
                st.markdown(f"**Original Query:** {entry['query']}")
                st.markdown(f"**Time:** {entry['timestamp']}")
                
                for j, result in enumerate(entry['results'], 1):
                    st.markdown(f"**Result {j}:**")
                    st.write(result['description'])
                    if result['youtube_id']:
                        st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")

    # Sidebar configuration
    with st.sidebar:
        st.subheader("βš™οΈ Configuration")
        st.markdown("**Video Search Settings**")
        st.slider("Default Results:", 1, 10, 5, key="default_results")
        
        st.markdown("**Voice Settings**")
        st.selectbox("TTS Voice:", 
                    ["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
                    key="tts_voice")
                    
        st.markdown("**Model Settings**")
        st.selectbox("Text Embedding Model:",
                    ["all-MiniLM-L6-v2", "paraphrase-multilingual-MiniLM-L12-v2"],
                    key="embedding_model")

        if st.button("πŸ“₯ Download Search History"):
            # Convert history to JSON
            history_json = json.dumps(st.session_state['search_history'], indent=2)
            b64 = base64.b64encode(history_json.encode()).decode()
            href = f'<a href="data:file/json;base64,{b64}" download="search_history.json">Download JSON</a>'
            st.markdown(href, unsafe_allow_html=True)

if __name__ == "__main__":
    main()