File size: 17,848 Bytes
90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 cc67713 2b0f7f4 cc67713 2b0f7f4 8630bc3 2b0f7f4 8630bc3 2b0f7f4 8630bc3 2b0f7f4 8630bc3 2b0f7f4 8630bc3 2b0f7f4 8630bc3 4a402b9 7616943 8630bc3 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 7616943 4a402b9 8630bc3 7616943 8630bc3 4a402b9 7616943 8630bc3 2b0f7f4 90807c0 cc67713 90807c0 cc67713 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 2b0f7f4 90807c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import streamlit as st
import pandas as pd
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import torch
import json
import os
import glob
from pathlib import Path
from datetime import datetime
import edge_tts
import asyncio
import base64
import requests
import plotly.graph_objects as go
from gradio_client import Client
from collections import defaultdict
from bs4 import BeautifulSoup
from audio_recorder_streamlit import audio_recorder
import streamlit.components.v1 as components
# Page configuration
st.set_page_config(
page_title="Video Search & Research Assistant",
page_icon="π₯",
layout="wide",
initial_sidebar_state="auto",
)
# Initialize session state
if 'search_history' not in st.session_state:
st.session_state['search_history'] = []
if 'last_voice_input' not in st.session_state:
st.session_state['last_voice_input'] = ""
if 'transcript_history' not in st.session_state:
st.session_state['transcript_history'] = []
if 'should_rerun' not in st.session_state:
st.session_state['should_rerun'] = False
# Custom styling
st.markdown("""
<style>
.main { background: linear-gradient(to right, #1a1a1a, #2d2d2d); color: #fff; }
.stMarkdown { font-family: 'Helvetica Neue', sans-serif; }
.stButton>button { margin-right: 0.5rem; }
</style>
""", unsafe_allow_html=True)
# Initialize components
speech_component = components.declare_component("speech_recognition", path="mycomponent")
class VideoSearch:
def __init__(self):
self.text_model = SentenceTransformer('all-MiniLM-L6-v2')
self.load_dataset()
def fetch_dataset_rows(self):
"""Fetch dataset from Hugging Face API with debug and caching"""
try:
st.info("Fetching from Hugging Face API...")
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
response = requests.get(url, timeout=30)
st.write(f"Response status: {response.status_code}")
if response.status_code == 200:
data = response.json()
if 'rows' in data:
# Extract actual row data from the nested structure
processed_rows = []
for row_data in data['rows']:
if 'row' in row_data: # Access the nested 'row' data
processed_rows.append(row_data['row'])
df = pd.DataFrame(processed_rows)
# Debug output
st.write("DataFrame columns after processing:", list(df.columns))
st.write("Number of rows:", len(df))
return df
else:
st.error("No 'rows' found in API response")
st.write("Raw API Response:", data)
return self.load_example_data()
else:
st.error(f"API request failed with status code: {response.status_code}")
return self.load_example_data()
except Exception as e:
st.error(f"Error fetching dataset: {str(e)}")
return self.load_example_data()
def load_example_data(self):
"""Load example data as fallback"""
example_data = [
{
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a close-up of an ancient text carved into a surface, with the text appearing to be in a cursive script.",
"views": 45489,
"start_time": 1452,
"end_time": 1458,
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
},
{
"video_id": "a8ebde7d-d717-4c1e-8be4-bdb4bc0c544f",
"youtube_id": "mo4rEyF7gTE",
"description": "This video shows a close-up view of a classical architectural structure, featuring stone statues with ornate details.",
"views": 4468,
"start_time": 318,
"end_time": 324,
"video_embed": [0.015160037972033024, -0.004111184574663639, -0.017604168340563774],
"description_embed": [-0.06835828185081482, 0.03589797042310238, 0.12952091753482819]
},
{
"video_id": "d1be64a6-22e2-4fbd-a176-20749e7c3d8a",
"youtube_id": "IO-vwtyicn4",
"description": "This video shows a weathered ancient painting depicting figures in classical style with vibrant colors preserved.",
"views": 45489,
"start_time": 1698,
"end_time": 1704,
"video_embed": [0.016160037972033024, -0.005111184574663639, -0.018604168340563774],
"description_embed": [-0.07835828185081482, 0.04589797042310238, 0.13952091753482819]
}
]
return pd.DataFrame(example_data)
def prepare_features(self):
"""Prepare and cache embeddings"""
try:
if 'video_embed' not in self.dataset.columns:
st.warning("Using example data embeddings")
self.dataset = self.load_example_data()
# Debug: Show raw data types and first row
st.write("Data Types:", self.dataset.dtypes)
st.write("\nFirst row of embeddings:")
st.write("video_embed type:", type(self.dataset['video_embed'].iloc[0]))
st.write("video_embed content:", self.dataset['video_embed'].iloc[0])
st.write("\ndescription_embed type:", type(self.dataset['description_embed'].iloc[0]))
st.write("description_embed content:", self.dataset['description_embed'].iloc[0])
# Convert string representations of embeddings back to numpy arrays
def safe_eval_list(s):
try:
# Clean the string representation
if isinstance(s, str):
s = s.replace('[', '').replace(']', '').strip()
# Split by whitespace and/or commas
numbers = [float(x.strip()) for x in s.split() if x.strip()]
return numbers
elif isinstance(s, list):
return [float(x) for x in s]
else:
st.error(f"Unexpected type for embedding: {type(s)}")
return None
except Exception as e:
st.error(f"Error parsing embedding: {str(e)}")
st.write("Problematic string:", s)
return None
# Process embeddings with detailed error reporting
video_embeds = []
text_embeds = []
for idx in range(len(self.dataset)):
try:
video_embed = safe_eval_list(self.dataset['video_embed'].iloc[idx])
desc_embed = safe_eval_list(self.dataset['description_embed'].iloc[idx])
if video_embed is not None and desc_embed is not None:
video_embeds.append(video_embed)
text_embeds.append(desc_embed)
else:
st.warning(f"Skipping row {idx} due to parsing failure")
except Exception as e:
st.error(f"Error processing row {idx}: {str(e)}")
st.write("Row data:", self.dataset.iloc[idx])
if video_embeds and text_embeds:
try:
self.video_embeds = np.array(video_embeds)
self.text_embeds = np.array(text_embeds)
st.success(f"Successfully processed {len(video_embeds)} embeddings")
st.write("Video embeddings shape:", self.video_embeds.shape)
st.write("Text embeddings shape:", self.text_embeds.shape)
except Exception as e:
st.error(f"Error converting to numpy arrays: {str(e)}")
else:
st.warning("No valid embeddings found, using random embeddings")
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
except Exception as e:
st.error(f"Error preparing features: {str(e)}")
import traceback
st.write("Traceback:", traceback.format_exc())
# Create random embeddings as fallback
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def load_dataset(self):
try:
self.dataset = self.fetch_dataset_rows()
if self.dataset is not None:
self.prepare_features()
else:
self.create_dummy_data()
except Exception as e:
st.error(f"Error loading dataset: {e}")
self.create_dummy_data()
def prepare_features(self):
try:
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
for e in self.dataset.video_embed])
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
for e in self.dataset.description_embed])
except Exception as e:
st.error(f"Error preparing features: {e}")
num_rows = len(self.dataset)
self.video_embeds = np.random.randn(num_rows, 384)
self.text_embeds = np.random.randn(num_rows, 384)
def search(self, query, top_k=5):
query_embedding = self.text_model.encode([query])[0]
video_sims = cosine_similarity([query_embedding], self.video_embeds)[0]
text_sims = cosine_similarity([query_embedding], self.text_embeds)[0]
combined_sims = 0.5 * video_sims + 0.5 * text_sims
top_indices = np.argsort(combined_sims)[-top_k:][::-1]
results = []
for idx in top_indices:
results.append({
'video_id': self.dataset.iloc[idx]['video_id'],
'youtube_id': self.dataset.iloc[idx]['youtube_id'],
'description': self.dataset.iloc[idx]['description'],
'start_time': self.dataset.iloc[idx]['start_time'],
'end_time': self.dataset.iloc[idx]['end_time'],
'relevance_score': float(combined_sims[idx]),
'views': self.dataset.iloc[idx]['views']
})
return results
def perform_arxiv_search(query, vocal_summary=True, extended_refs=False):
"""Perform Arxiv search with audio summaries"""
try:
client = Client("awacke1/Arxiv-Paper-Search-And-QA-RAG-Pattern")
refs = client.predict(query, 20, "Semantic Search",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
api_name="/update_with_rag_md")[0]
response = client.predict(query, "mistralai/Mixtral-8x7B-Instruct-v0.1",
True, api_name="/ask_llm")
result = f"### π {query}\n\n{response}\n\n{refs}"
st.markdown(result)
if vocal_summary:
audio_file = asyncio.run(generate_speech(response[:500]))
if audio_file:
st.audio(audio_file)
os.remove(audio_file)
return result
except Exception as e:
st.error(f"Error in Arxiv search: {e}")
return None
async def generate_speech(text, voice="en-US-AriaNeural"):
"""Generate speech using Edge TTS"""
if not text.strip():
return None
try:
communicate = edge_tts.Communicate(text, voice)
audio_file = f"speech_{datetime.now().strftime('%Y%m%d_%H%M%S')}.mp3"
await communicate.save(audio_file)
return audio_file
except Exception as e:
st.error(f"Error generating speech: {e}")
return None
def process_audio_input(audio_bytes):
"""Process audio input from recorder"""
if audio_bytes:
# Save temporary file
audio_path = f"temp_audio_{datetime.now().strftime('%Y%m%d_%H%M%S')}.wav"
with open(audio_path, "wb") as f:
f.write(audio_bytes)
# Here you would typically use a speech-to-text service
# For now, we'll just acknowledge the recording
st.success("Audio recorded successfully!")
# Cleanup
if os.path.exists(audio_path):
os.remove(audio_path)
return True
return False
def main():
st.title("π₯ Video Search & Research Assistant")
# Initialize search
search = VideoSearch()
# Create main tabs
tab1, tab2, tab3 = st.tabs(["π Video Search", "ποΈ Voice & Audio", "π Arxiv Research"])
with tab1:
st.subheader("Search Video Dataset")
# Text search
query = st.text_input("Enter your search query:")
col1, col2 = st.columns(2)
with col1:
search_button = st.button("π Search")
with col2:
num_results = st.slider("Number of results:", 1, 10, 5)
if search_button and query:
results = search.search(query, num_results)
st.session_state['search_history'].append({
'query': query,
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'results': results
})
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}: {result['description'][:100]}...", expanded=i==1):
cols = st.columns([2, 1])
with cols[0]:
st.markdown(f"**Full Description:**")
st.write(result['description'])
st.markdown(f"**Time Range:** {result['start_time']}s - {result['end_time']}s")
st.markdown(f"**Views:** {result['views']:,}")
with cols[1]:
st.markdown(f"**Relevance Score:** {result['relevance_score']:.2%}")
if result['youtube_id']:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
# Generate audio summary
if st.button(f"π Generate Audio Summary", key=f"audio_{i}"):
summary = f"Video summary: {result['description'][:200]}"
audio_file = asyncio.run(generate_speech(summary))
if audio_file:
st.audio(audio_file)
os.remove(audio_file)
with tab2:
st.subheader("Voice Input & Audio Recording")
col1, col2 = st.columns(2)
with col1:
st.write("ποΈ Speech Recognition")
voice_input = speech_component()
if voice_input and voice_input != st.session_state['last_voice_input']:
st.session_state['last_voice_input'] = voice_input
st.markdown("**Transcribed Text:**")
st.write(voice_input)
if st.button("π Search Videos"):
results = search.search(voice_input, num_results)
for i, result in enumerate(results, 1):
with st.expander(f"Result {i}", expanded=i==1):
st.write(result['description'])
if result['youtube_id']:
st.video(f"https://youtube.com/watch?v={result['youtube_id']}&t={result['start_time']}")
with col2:
st.write("π΅ Audio Recorder")
audio_bytes = audio_recorder()
if audio_bytes:
process_audio_input(audio_bytes)
with tab3:
st.subheader("Arxiv Research")
arxiv_query = st.text_input("π Research Query:")
col1, col2 = st.columns(2)
with col1:
vocal_summary = st.checkbox("Generate Audio Summary", value=True)
with col2:
extended_refs = st.checkbox("Include Extended References", value=False)
if st.button("π Search Arxiv") and arxiv_query:
perform_arxiv_search(arxiv_query, vocal_summary, extended_refs)
# Sidebar for history and settings
with st.sidebar:
st.subheader("βοΈ Settings & History")
if st.button("ποΈ Clear History"):
st.session_state['search_history'] = []
st.experimental_rerun()
st.markdown("### Recent Searches")
for entry in reversed(st.session_state['search_history'][-5:]):
st.markdown(f"**{entry['timestamp']}**: {entry['query']}")
st.markdown("### Voice Settings")
st.selectbox("TTS Voice:",
["en-US-AriaNeural", "en-US-GuyNeural", "en-GB-SoniaNeural"],
key="tts_voice")
if __name__ == "__main__":
main() |