Update app.py
Browse files
app.py
CHANGED
@@ -58,72 +58,101 @@ class VideoSearch:
|
|
58 |
def fetch_dataset_rows(self):
|
59 |
"""Fetch dataset from Hugging Face API with debug and caching"""
|
60 |
try:
|
61 |
-
# First try to load from local cache
|
62 |
-
cache_file = "dataset_cache.json"
|
63 |
-
if os.path.exists(cache_file):
|
64 |
-
st.info("Loading from cache...")
|
65 |
-
with open(cache_file, 'r', encoding='utf-8') as f:
|
66 |
-
data = json.load(f)
|
67 |
-
return pd.DataFrame(data)
|
68 |
-
|
69 |
st.info("Fetching from Hugging Face API...")
|
70 |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
71 |
|
72 |
-
# Add debug output
|
73 |
-
st.write(f"Requesting URL: {url}")
|
74 |
-
|
75 |
response = requests.get(url, timeout=30)
|
76 |
st.write(f"Response status: {response.status_code}")
|
77 |
|
78 |
if response.status_code == 200:
|
79 |
data = response.json()
|
80 |
|
81 |
-
# Debug output
|
82 |
-
st.write("Response structure:", list(data.keys()))
|
83 |
-
|
84 |
if 'rows' in data:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
df = pd.DataFrame(
|
92 |
|
93 |
# Debug output
|
94 |
-
st.write("DataFrame columns:", list(df.columns))
|
95 |
st.write("Number of rows:", len(df))
|
96 |
|
97 |
return df
|
98 |
else:
|
99 |
st.error("No 'rows' found in API response")
|
100 |
-
st.write("API Response:", data)
|
101 |
-
|
102 |
-
# Try loading example data
|
103 |
-
example_file = "example_data.json"
|
104 |
-
if os.path.exists(example_file):
|
105 |
-
st.info("Loading example data...")
|
106 |
-
with open(example_file, 'r', encoding='utf-8') as f:
|
107 |
-
example_data = json.load(f)
|
108 |
-
return pd.DataFrame(example_data)
|
109 |
-
|
110 |
-
return None
|
111 |
else:
|
112 |
st.error(f"API request failed with status code: {response.status_code}")
|
113 |
-
|
114 |
-
st.error("Dataset not found - check the dataset name and configuration")
|
115 |
-
try:
|
116 |
-
error_details = response.json()
|
117 |
-
st.write("Error details:", error_details)
|
118 |
-
except:
|
119 |
-
st.write("Raw response:", response.text)
|
120 |
-
return None
|
121 |
|
122 |
except Exception as e:
|
123 |
st.error(f"Error fetching dataset: {str(e)}")
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def load_dataset(self):
|
129 |
try:
|
|
|
58 |
def fetch_dataset_rows(self):
|
59 |
"""Fetch dataset from Hugging Face API with debug and caching"""
|
60 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
st.info("Fetching from Hugging Face API...")
|
62 |
url = "https://datasets-server.huggingface.co/first-rows?dataset=omegalabsinc%2Fomega-multimodal&config=default&split=train"
|
63 |
|
|
|
|
|
|
|
64 |
response = requests.get(url, timeout=30)
|
65 |
st.write(f"Response status: {response.status_code}")
|
66 |
|
67 |
if response.status_code == 200:
|
68 |
data = response.json()
|
69 |
|
|
|
|
|
|
|
70 |
if 'rows' in data:
|
71 |
+
# Extract actual row data from the nested structure
|
72 |
+
processed_rows = []
|
73 |
+
for row_data in data['rows']:
|
74 |
+
if 'row' in row_data: # Access the nested 'row' data
|
75 |
+
processed_rows.append(row_data['row'])
|
76 |
|
77 |
+
df = pd.DataFrame(processed_rows)
|
78 |
|
79 |
# Debug output
|
80 |
+
st.write("DataFrame columns after processing:", list(df.columns))
|
81 |
st.write("Number of rows:", len(df))
|
82 |
|
83 |
return df
|
84 |
else:
|
85 |
st.error("No 'rows' found in API response")
|
86 |
+
st.write("Raw API Response:", data)
|
87 |
+
return self.load_example_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
else:
|
89 |
st.error(f"API request failed with status code: {response.status_code}")
|
90 |
+
return self.load_example_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
except Exception as e:
|
93 |
st.error(f"Error fetching dataset: {str(e)}")
|
94 |
+
return self.load_example_data()
|
95 |
+
|
96 |
+
def load_example_data(self):
|
97 |
+
"""Load example data as fallback"""
|
98 |
+
example_data = [
|
99 |
+
{
|
100 |
+
"video_id": "cd21da96-fcca-4c94-a60f-0b1e4e1e29fc",
|
101 |
+
"youtube_id": "IO-vwtyicn4",
|
102 |
+
"description": "This video shows a close-up of an ancient text carved into a surface, with the text appearing to be in a cursive script.",
|
103 |
+
"views": 45489,
|
104 |
+
"start_time": 1452,
|
105 |
+
"end_time": 1458,
|
106 |
+
"video_embed": [0.014160037972033024, -0.003111184574663639, -0.016604168340563774],
|
107 |
+
"description_embed": [-0.05835828185081482, 0.02589797042310238, 0.11952091753482819]
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"video_id": "a8ebde7d-d717-4c1e-8be4-bdb4bc0c544f",
|
111 |
+
"youtube_id": "mo4rEyF7gTE",
|
112 |
+
"description": "This video shows a close-up view of a classical architectural structure, featuring stone statues with ornate details.",
|
113 |
+
"views": 4468,
|
114 |
+
"start_time": 318,
|
115 |
+
"end_time": 324,
|
116 |
+
"video_embed": [0.015160037972033024, -0.004111184574663639, -0.017604168340563774],
|
117 |
+
"description_embed": [-0.06835828185081482, 0.03589797042310238, 0.12952091753482819]
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"video_id": "d1be64a6-22e2-4fbd-a176-20749e7c3d8a",
|
121 |
+
"youtube_id": "IO-vwtyicn4",
|
122 |
+
"description": "This video shows a weathered ancient painting depicting figures in classical style with vibrant colors preserved.",
|
123 |
+
"views": 45489,
|
124 |
+
"start_time": 1698,
|
125 |
+
"end_time": 1704,
|
126 |
+
"video_embed": [0.016160037972033024, -0.005111184574663639, -0.018604168340563774],
|
127 |
+
"description_embed": [-0.07835828185081482, 0.04589797042310238, 0.13952091753482819]
|
128 |
+
}
|
129 |
+
]
|
130 |
+
return pd.DataFrame(example_data)
|
131 |
+
|
132 |
+
def prepare_features(self):
|
133 |
+
"""Prepare and cache embeddings"""
|
134 |
+
try:
|
135 |
+
if 'video_embed' not in self.dataset.columns:
|
136 |
+
st.warning("Using example data embeddings")
|
137 |
+
self.dataset = self.load_example_data()
|
138 |
+
|
139 |
+
# Convert string representations of embeddings back to numpy arrays
|
140 |
+
try:
|
141 |
+
self.video_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
142 |
+
for e in self.dataset.video_embed])
|
143 |
+
self.text_embeds = np.array([json.loads(e) if isinstance(e, str) else e
|
144 |
+
for e in self.dataset.description_embed])
|
145 |
+
except Exception as e:
|
146 |
+
st.error(f"Error converting embeddings: {e}")
|
147 |
+
num_rows = len(self.dataset)
|
148 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
149 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
150 |
+
except Exception as e:
|
151 |
+
st.error(f"Error preparing features: {e}")
|
152 |
+
# Create random embeddings as fallback
|
153 |
+
num_rows = len(self.dataset)
|
154 |
+
self.video_embeds = np.random.randn(num_rows, 384)
|
155 |
+
self.text_embeds = np.random.randn(num_rows, 384)
|
156 |
|
157 |
def load_dataset(self):
|
158 |
try:
|