Spaces:
Runtime error
Runtime error
File size: 13,778 Bytes
6d10c64 a1bc39d 4c61fcd 7de20a0 97632b5 4515305 97632b5 d5be6af cab9610 2b64787 97632b5 e610ece 5293e61 e610ece 1423dfb a1bc39d 192d9af 9420ba3 97632b5 9420ba3 46d20c8 97632b5 1423dfb 4515305 9e8be11 e610ece 9e8be11 e610ece 9e8be11 eb55011 53bd282 e450f6c 53bd282 09e2691 53bd282 7f2ec6d 09e2691 7f2ec6d 09e2691 53bd282 7f2ec6d 97632b5 7f2ec6d 3eb58cd b1b3f71 4515305 3fbe817 b1b3f71 9224ffd b24494c 4ca8440 5bdbc1f 3eb58cd fd71939 b1b3f71 3eb58cd 04fbf3e 3eb58cd 04fbf3e 3c56f3a 21d804e 9907d16 9224ffd 429953d 04fbf3e 46d20c8 5b4db95 3c56f3a 9907d16 5b4db95 04fbf3e 5b4db95 04fbf3e 3eb58cd 919b891 9224ffd 919b891 9224ffd 919b891 92d4436 8373fbf b56fd2b 92d4436 c585a5d 429953d b56fd2b 9224ffd 919b891 46d20c8 9907d16 8cacfad d6b5ec6 9907d16 4ca8440 f076e4f 92d4436 4ca8440 92d4436 4ca8440 f076e4f 38098e8 46d20c8 99c33b8 e5a45fc 914a779 e5a45fc 7f2ec6d 53bd282 8e7188b 38098e8 212ca5f 38098e8 212ca5f 38098e8 61c7a4c bef2a73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 |
import os
import gradio as gr
import pandas as pd
import torch
import torch.nn as nn
import transformers
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig, AutoModel
import pandas as pd
import tensorflow as tf
import numpy as np
import math
import time
import csv
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
nltk.download('stopwords')
nltk.download('punkt')
import string
########### Import Classifier Embeddings #########
class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')
########### DATA CLEANER VARIABLES #############
all_stopwords = stopwords.words('english') # Making sure to only use English stopwords
extra_stopwords = ['ii', 'iii'] # Can add extra stopwords to be removed from dataset/input abstracts
all_stopwords.extend(extra_stopwords)
########### GET CLAIMED TRAINED MODEL ###########
auth_token = os.environ.get("AUTH_TOKEN_SECRET")
tokenizer = LlamaTokenizer.from_pretrained("Claimed/capybara", use_auth_token=auth_token)
model = LlamaForCausalLM.from_pretrained(
"Claimed/capybara", use_auth_token=auth_token,
load_in_8bit=True,
device_map="auto") #low_cpu_mem_usage=True)
########## DEFINING FUNCTIONS ###################
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0]
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return tf.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.clip_by_value(input_mask_expanded.sum(1), clip_value_min=1e-9, clip_value_max=math.inf)
def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensitivity='Medium'):
predictions = pd.DataFrame(columns=['Class Name', 'Score'])
for i in range(len(class_embeddings)):
class_name = class_embeddings.iloc[i, 0]
embedding = class_embeddings.iloc[i, 2]
embedding = convert_saved_embeddings(embedding)
abstract_embedding = abstract_embedding.numpy()
abstract_embedding = torch.from_numpy(abstract_embedding)
cos = torch.nn.CosineSimilarity(dim=1)
score = cos(abstract_embedding, embedding).numpy().tolist()
result = [class_name, score[0]]
predictions.loc[len(predictions)] = result
if Sensitivity == 'High':
Threshold = 0.5
elif Sensitivity == 'Medium':
Threshold = 0.40
elif Sensitivity == 'Low':
Threshold = 0.35
GreenLikelihood = 'False'
for i in range(len(greenpredictions)):
score = greenpredictions.iloc[i, 1]
if float(score) >= Threshold:
GreenLikelihood = 'True'
break
else:
continue
HighestSimilarity = predictions.nlargest(N, ['Score'])
return HighestSimilarity
def sentence_embedder(sentences, model_path):
tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #outputs a (1, 384) tensor representation of input text
return sentence_embeddings
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def add_file(history, file):
history = history + [((file.name,), None)]
return history
def bot(history):
response = "**That's cool!**"
history[-1][1] = response
return history
########## LOADING PRE-COMPUTED EMBEDDINGS ##########
def clean_data(input, type='Dataframe'):
if type == 'Dataframe':
cleaneddf = pd.DataFrame(columns=['Class', 'Description'])
for i in range(0, len(input)):
row_list = input.loc[i, :].values.flatten().tolist()
noNaN_row = [x for x in row_list if str(x) != 'nan']
listrow = []
if len(noNaN_row) > 0:
row = noNaN_row[:-1]
row = [x.strip() for x in row]
row = (" ").join(row)
text_tokens = word_tokenize(row) # splits abstracts into individual tokens to allow removal of stopwords by list comprehension
Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords] # removes stopwords
row = (" ").join(Stopword_Filtered_List) # returns abstract to string form
removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$']
for char in removechars:
row = list(map(lambda x: x.replace(char, ''), row))
row = ''.join(row)
wnum = row.split(' ')
wnum = [x.lower() for x in wnum]
#remove duplicate words
wnum = list(dict.fromkeys(wnum))
#removing numbers
wonum = []
for x in wnum:
xv = list(x)
xv = [i.isnumeric() for i in xv]
if True in xv:
continue
else:
wonum.append(x)
row = ' '.join(wonum)
l = [noNaN_row[-1], row]
cleaneddf.loc[len(cleaneddf)] = l
cleaneddf = cleaneddf.drop_duplicates(subset=['Description'])
cleaneddf.to_csv('E:/Users/eeo21/Startup/CPC_Classifications_List/additionalcleanedclasses.csv', index=False)
return cleaneddf
elif type == 'String':
text_tokens = word_tokenize(input) # splits abstracts into individual tokens to allow removal of stopwords by list comprehension
Stopword_Filtered_List = [word for word in text_tokens if not word in all_stopwords] # removes stopwords
row = (" ").join(Stopword_Filtered_List) # returns abstract to string form
removechars = ['[', ']', '{', '}', ';', '(', ')', ',', '.', ':', '/', '-', '#', '?', '@', '£', '$']
for char in removechars:
row = list(map(lambda x: x.replace(char, ''), row))
row = ''.join(row)
wnum = row.split(' ')
wnum = [x.lower() for x in wnum]
# remove duplicate words
wnum = list(dict.fromkeys(wnum))
# removing numbers
wonum = []
for x in wnum:
xv = list(x)
xv = [i.isnumeric() for i in xv]
if True in xv:
continue
else:
wonum.append(x)
row = ' '.join(wonum)
return row
def classifier(userin):
clean_in = clean_data(userin, type='String')
in_emb = sentence_embedder(clean_in, 'Model_bert')
Number = 10
broad_scope_predictions = broad_scope_class_predictor(class_embeddings, in_emb, Number, Sensitivity='High')
return broad_scope_predictions
def generateresponse(history):#, task):
"""
Model definition here:
"""
global model
global tokenizer
user = history[-1][0]
PROMPT = f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{user}
### Response:"""
inputs = tokenizer(
PROMPT,
return_tensors="pt",
)
input_ids = inputs["input_ids"].cuda()
generation_config = GenerationConfig(
temperature=0.6,
top_p=0.95,
repetition_penalty=1.15,
)
print("Generating...")
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=256,
)
output = []
for s in generation_output.sequences:
output.append(tokenizer.decode(s))
print(tokenizer.decode(s))
outputs = (output[0].split('### Response:'))[1]
response = f"Response: {outputs}"
history[-1][1] = response
print(history)
return history
############# GRADIO APP ###############
theme = gr.themes.Base(
primary_hue="indigo",
).set(
prose_text_size='*text_sm'
)
with gr.Blocks(title='Claimed', theme=theme) as demo:
gr.Markdown("""
# CLAIMED - A GENERATIVE TOOLKIT FOR PATENT ATTORNEYS
The patenting process can be incredibly time-consuming and expensive. We're on a mission to change that.
Welcome to our demo! We've trained Meta's Llama on over 200k entries, with a focus on tasks related to the intellectual property domain.
Please note that this is for research purposes and shouldn't be used commercially.
None of the outputs of this model, taken in part or in its entirety, constitutes legal advice. If you are seeking protection for you intellectual property, consult a registered patent/trademark attorney.
""")
with gr.Tab("Claim Drafter"):
gr.Markdown("""
Use this tool to expand your idea into the technical language of a patent claim. You can specify the type of claim you want using the dropdown menu.
""")
gr.Dropdown(["Apparatus Claim", "Method of Use Claim", "Method Claim", ], label='Choose Claim Type Here')
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
with gr.Tab("Description Generator"):
gr.Markdown("""
Use this tool to expand your patent claim into a description. You can also use this tool to generate abstracts and give you ideas about the benefit of an invention by changing the settings in the dropdown menu.
""")
gr.Dropdown(["Generate Description", "Generate Abstract", "Benefits of the invention"], label='Choose Generation Type Here')
with gr.Row(scale=1, min_width=600):
text1 = gr.Textbox(label="Input",
placeholder='Type in your idea here!')
text2 = gr.Textbox(label="Output")
# with gr.Tab("Knowledge Graph"):
# gr.Markdown("""
# Use this tool to generate a knowledge graph of your invention. This will help highlight the links between features.
# """)
# with gr.Row(scale=1, min_width=600):
# text1 = gr.Textbox(label="Input",
# placeholder='Type in your idea here!')
# text2 = gr.Textbox(label="Output")
# with gr.Tab("Prosecution Ideator"):
# gr.Markdown("""
# Use this tool to generate ideas for how to overcome objections to novelty and inventive step. Outputs are in the problem-solution format.
# """)
# with gr.Row(scale=1, min_width=600):
# text1 = gr.Textbox(label="Input",
# placeholder='Type in your idea here!')
# text2 = gr.Textbox(label="Output")
# with gr.Tab("Claimed Infill"):
# gr.Markdown("""
# Below is our
# Example input: A device to help the visually impaired using proprioception.
# Output:
# """)
# with gr.Row(scale=1, min_width=600):
# text1 = gr.Textbox(label="Input",
# placeholder='Type in your idea here!')
# text2 = gr.Textbox(label="Output")
with gr.Tab("CPC Search Tool"):
gr.Markdown("""
Use this tool to classify your invention according to the Cooperative Patent Classification system.
Click on the link to initiate either an Espacenet or Google Patents classification search using the generated classifications. You can specify which you would like using the dropdown menu.
""")
gr.Dropdown(["Google Patent Search", "Espacenet Patent Search"], label='Choose Search Type Here')
with gr.Row(scale=1, min_width=600):
userin = gr.Textbox(label="Input",
placeholder='Type in your Claim/Description/Abstract Here')
output = gr.Textbox(label="Output")
with gr.Row():
classify_btn = gr.Button("Classify")
classify_btn.click(fn=classifier, inputs=[userin] , outputs=output)
gr.Markdown("""
# THE CHATBOT
Do you want a bit more freedom over the outputs you generate? No worries, you can use a chatbot version of our model below. You can ask it anything.
If you're concerned about a particular output, hit the flag button and we will use that information to improve the model.
""")
chatbot = gr.Chatbot([], elem_id="Claimed Assistant").style(height=500)
with gr.Row():
with gr.Column(scale=0.85):
txt = gr.Textbox(
show_label=False,
placeholder="Enter text and submit",
).style(container=False)
with gr.Column(scale=0.15, min_width=0):
btn = gr.Button("Submit")
txt.submit(add_text, [chatbot, txt], [chatbot, txt]).then(
generateresponse, chatbot, chatbot)
gr.Markdown("""
# HAVE AN IDEA? GET IT CLAIMED
In the future, we are looking to expand our model's capabilities further to assist in a range of IP related tasks.
If you are interested in using a more powerful model that we have trained, or if you have any suggestions of features you would like to see us add, please get in touch!
As far as data is concerned, you have nothing to worry about! We don't store any of your inputs to use for further training, we're not OpenAI.
""")
demo.launch() |