Spaces:
Runtime error
Runtime error
Commit
·
e610ece
1
Parent(s):
d6b5ec6
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,6 @@ import torch.nn as nn
|
|
7 |
import transformers
|
8 |
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig
|
9 |
|
10 |
-
|
11 |
auth_token = os.environ.get("AUTH_TOKEN_SECRET")
|
12 |
|
13 |
tokenizer = LlamaTokenizer.from_pretrained("Claimed/capybara", use_auth_token=auth_token)
|
@@ -19,7 +18,44 @@ model = LlamaForCausalLM.from_pretrained(
|
|
19 |
|
20 |
#model = model.to('cuda')
|
21 |
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
def add_text(history, text):
|
24 |
history = history + [(text, None)]
|
25 |
return history, ""
|
@@ -42,12 +78,11 @@ def classifier(userin):
|
|
42 |
in_emb = classification.sentence_embedder(clean_in, 'Model_bert')
|
43 |
|
44 |
Number = 10
|
45 |
-
broad_scope_predictions =
|
46 |
|
47 |
-
return broad_scope_predictions
|
48 |
|
49 |
|
50 |
-
|
51 |
def generateresponse(history):#, task):
|
52 |
"""
|
53 |
Model definition here:
|
|
|
7 |
import transformers
|
8 |
from transformers import AutoTokenizer, AutoConfig, LlamaForCausalLM, LlamaTokenizer, GenerationConfig
|
9 |
|
|
|
10 |
auth_token = os.environ.get("AUTH_TOKEN_SECRET")
|
11 |
|
12 |
tokenizer = LlamaTokenizer.from_pretrained("Claimed/capybara", use_auth_token=auth_token)
|
|
|
18 |
|
19 |
#model = model.to('cuda')
|
20 |
|
21 |
+
def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensitivity='Medium'):
|
22 |
+
"""
|
23 |
+
Takes in pre-computed class embeddings and abstract texts, converts abstract text into
|
24 |
+
:param class_embeddings: dataframe of class embeddings
|
25 |
+
:param abstract: a single abstract embedding
|
26 |
+
:param N: N highest matching classes to return, from highest to lowest, default is 5
|
27 |
+
:return: predictions: a full dataframe of all the predictions on the 9500+ classes, HighestSimilarity: Dataframe of the N most similar classes
|
28 |
+
"""
|
29 |
+
predictions = pd.DataFrame(columns=['Class Name', 'Score'])
|
30 |
+
for i in range(len(class_embeddings)):
|
31 |
+
class_name = class_embeddings.iloc[i, 0]
|
32 |
+
embedding = class_embeddings.iloc[i, 2]
|
33 |
+
embedding = convert_saved_embeddings(embedding)
|
34 |
+
abstract_embedding = abstract_embedding.numpy()
|
35 |
+
abstract_embedding = torch.from_numpy(abstract_embedding)
|
36 |
+
cos = torch.nn.CosineSimilarity(dim=1)
|
37 |
+
score = cos(abstract_embedding, embedding).numpy().tolist()
|
38 |
+
result = [class_name, score[0]]
|
39 |
+
predictions.loc[len(predictions)] = result
|
40 |
+
greenpredictions = predictions.tail(52)
|
41 |
+
if Sensitivity == 'High':
|
42 |
+
Threshold = 0.5
|
43 |
+
elif Sensitivity == 'Medium':
|
44 |
+
Threshold = 0.40
|
45 |
+
elif Sensitivity == 'Low':
|
46 |
+
Threshold = 0.35
|
47 |
+
GreenLikelihood = 'False'
|
48 |
+
for i in range(len(greenpredictions)):
|
49 |
+
score = greenpredictions.iloc[i, 1]
|
50 |
+
if float(score) >= Threshold:
|
51 |
+
GreenLikelihood = 'True'
|
52 |
+
break
|
53 |
+
else:
|
54 |
+
continue
|
55 |
+
HighestSimilarity = predictions.nlargest(N, ['Score'])
|
56 |
+
|
57 |
+
return HighestSimilarity
|
58 |
+
|
59 |
def add_text(history, text):
|
60 |
history = history + [(text, None)]
|
61 |
return history, ""
|
|
|
78 |
in_emb = classification.sentence_embedder(clean_in, 'Model_bert')
|
79 |
|
80 |
Number = 10
|
81 |
+
broad_scope_predictions = broad_scope_class_predictor(class_embeddings, in_emb, Number, Sensitivity='High')
|
82 |
|
83 |
+
return broad_scope_predictions
|
84 |
|
85 |
|
|
|
86 |
def generateresponse(history):#, task):
|
87 |
"""
|
88 |
Model definition here:
|