Spaces:
Runtime error
Runtime error
Commit
·
1423dfb
1
Parent(s):
e610ece
Update app.py
Browse files
app.py
CHANGED
@@ -54,6 +54,22 @@ def broad_scope_class_predictor(class_embeddings, abstract_embedding, N=5, Sensi
|
|
54 |
continue
|
55 |
HighestSimilarity = predictions.nlargest(N, ['Score'])
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
return HighestSimilarity
|
58 |
|
59 |
def add_text(history, text):
|
@@ -75,14 +91,13 @@ class_embeddings = pd.read_csv('Embeddings/MainClassEmbeddings.csv')
|
|
75 |
|
76 |
def classifier(userin):
|
77 |
clean_in = classification.clean_data(userin, type='String')
|
78 |
-
in_emb =
|
79 |
|
80 |
Number = 10
|
81 |
broad_scope_predictions = broad_scope_class_predictor(class_embeddings, in_emb, Number, Sensitivity='High')
|
82 |
|
83 |
return broad_scope_predictions
|
84 |
|
85 |
-
|
86 |
def generateresponse(history):#, task):
|
87 |
"""
|
88 |
Model definition here:
|
|
|
54 |
continue
|
55 |
HighestSimilarity = predictions.nlargest(N, ['Score'])
|
56 |
|
57 |
+
def sentence_embedder(sentences, model_path):
|
58 |
+
"""
|
59 |
+
Calling the sentence similarity model to generate embeddings on input text.
|
60 |
+
:param sentences: takes input text in the form of a string
|
61 |
+
:param model_path: path to the text similarity model
|
62 |
+
:return returns a (1, 384) embedding of the input text
|
63 |
+
"""
|
64 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path) #instantiating the sentence embedder using HuggingFace library
|
65 |
+
model = AutoModel.from_pretrained(model_path, from_tf=True) #making a model instance
|
66 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
67 |
+
# Compute token embeddings
|
68 |
+
with torch.no_grad():
|
69 |
+
model_output = model(**encoded_input)
|
70 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) #outputs a (1, 384) tensor representation of input text
|
71 |
+
return sentence_embeddings
|
72 |
+
|
73 |
return HighestSimilarity
|
74 |
|
75 |
def add_text(history, text):
|
|
|
91 |
|
92 |
def classifier(userin):
|
93 |
clean_in = classification.clean_data(userin, type='String')
|
94 |
+
in_emb = sentence_embedder(clean_in, 'Model_bert')
|
95 |
|
96 |
Number = 10
|
97 |
broad_scope_predictions = broad_scope_class_predictor(class_embeddings, in_emb, Number, Sensitivity='High')
|
98 |
|
99 |
return broad_scope_predictions
|
100 |
|
|
|
101 |
def generateresponse(history):#, task):
|
102 |
"""
|
103 |
Model definition here:
|