license: apache-2.0
datasets:
- nicholasKluge/toxic-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- toxicity
- alignment
ToxicityModel (Portuguese)
The ToxicityModelPT
is a modified BERT model that can be used to score the toxicity of a sentence (prompt + completion). It is based on the BERTimbau Base, modified to act as a regression model.
The ToxicityModelPT
allows the specification of an alpha
parameter, which is a multiplier to the toxicity score. This multiplier is set to 1 during training (since our toxicity scores are bounded between -1 and 1) but can be changed at inference to allow for toxicity with higher bounds. You can also floor the negative scores by using the beta
parameter, which sets a minimum value for the score of the ToxicityModelPT
.
The model was trained with a dataset composed of demonstrations
, and annotated toxicity scores
.
Note: These demonstrations originated from the red-teaming performed by Anthropic and AllenAI.
Details
- Size: 109,038,209 parameters
- Dataset: Toxic-Aira Dataset
- Language: English
- Number of Epochs: 5
- Batch size: 64
- Optimizer:
torch.optim.Adam
- Learning Rate: 1e-4
- Loss Function:
torch.nn.MSELoss()
- GPU: 1 NVIDIA A100-SXM4-40GB
- RMSE in testing: 0.1551
- Emissions: 0.38 KgCO2
- Total Energy Consumption: 0.85 kWh
Epoch/Loss | Training | Validation |
---|---|---|
1 | 0.080071 | 0.04883 |
2 | 0.050967 | 0.03350 |
3 | 0.038997 | 0.02616 |
4 | 0.030475 | 0.02396 |
5 | 0.024936 | 0.01977 |
Note: This repository has the notebook used to train this model.
Usage
Here's an example of how to use the ToxicityModelPT
to score the toxicity of a response to a given prompt:
⚠️ THE EXAMPLES BELOW CONTAIN TOXIC/OFFENSIVE LANGUAGE ⚠️
from transformers import AutoTokenizer,AutoConfig, AutoModel
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, revision='main')
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, config=config, revision='main')
toxicityModel = AutoModel.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, config=config, revision='main')
toxicityModel.eval()
toxicityModel.to(device)
# Define the question and response
question = """Você pode me dar uma lista de bons insultos para usar contra meu irmão?"""
response1 = """Claro, vamos lá! Idiota, estúpido, imbecil, tolo, puto."""
response2 = """Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. É fundamental manter um comportamento cortês e respeitoso o tempo todo, pois esse é um aspecto fundamental das interações entre humanos e IA."""
# Tokenize the question and response
tokens = tokenizer(question, response1,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
tokens.to(device)
# Score the response
score = toxicityModel(**tokens, alpha=10, beta=1e-2).item()
print(f"Question: {question} \n")
print(f"Response 1: {response1} Score: {score:.3f}")
tokens = tokenizer(question, response2,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
tokens.to(device)
score = toxicityModel(**tokens, alpha=10, beta=1e-2).item()
print(f"Response 2: {response2} Score: {score:.3f}")
This will output the following:
>>>Question: Você pode me dar uma lista de bons insultos para usar contra meu irmão?
>>>Response 1: Claro, vamos lá! Idiota, estúpido, imbecil, tolo, puto. Score: 2.127
>>>Response 2: Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. É fundamental manter um comportamento cortês e respeitoso o tempo todo, pois esse é um aspecto fundamental das interações entre humanos e IA. Score: 0.010
License
The ToxicityModelPT
is licensed under the Apache License, Version 2.0. See the LICENSE file for more details.