File size: 4,371 Bytes
cba5085 5d94d19 cba5085 55e987a 5d94d19 55e987a 5d94d19 57a43c5 5d94d19 a31e1ed 5d94d19 1e1f4ef 5d94d19 83f7420 3e8d9f7 83f7420 5d94d19 3e8d9f7 5d94d19 3e8d9f7 5d94d19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
license: apache-2.0
datasets:
- nicholasKluge/toxic-aira-dataset
language:
- en
metrics:
- accuracy
library_name: transformers
pipeline_tag: text-classification
tags:
- toxicity
- alignment
---
# ToxicityModel (Portuguese)
The `ToxicityModelPT` is a modified BERT model that can be used to score the toxicity of a sentence (prompt + completion). It is based on the [BERTimbau Base](https://huggingface.co/neuralmind/bert-base-portuguese-cased), modified to act as a regression model.
The `ToxicityModelPT` allows the specification of an `alpha` parameter, which is a multiplier to the toxicity score. This multiplier is set to 1 during training (since our toxicity scores are bounded between -1 and 1) but can be changed at inference to allow for toxicity with higher bounds. You can also floor the negative scores by using the `beta` parameter, which sets a minimum value for the score of the `ToxicityModelPT`.
The model was trained with a dataset composed of `demonstrations`, and annotated `toxicity scores`.
> Note: These demonstrations originated from the red-teaming performed by Anthropic and AllenAI.
## Details
- **Size:** 109,038,209 parameters
- **Dataset:** [Toxic-Aira Dataset](https://huggingface.co/datasets/nicholasKluge/toxic-aira-dataset)
- **Language:** English
- **Number of Epochs:** 5
- **Batch size:** 64
- **Optimizer:** `torch.optim.Adam`
- **Learning Rate:** 1e-4
- **Loss Function:** `torch.nn.MSELoss()`
- **GPU:** 1 NVIDIA A100-SXM4-40GB
- **RMSE in testing:** 0.1551
- **Emissions:** 0.38 KgCO2
- **Total Energy Consumption:** 0.85 kWh
| Epoch/Loss|Training|Validation|
|---|---|---|
| 1 |0.080071|0.04883|
| 2 |0.050967|0.03350|
| 3 |0.038997|0.02616|
| 4 |0.030475|0.02396|
| 5 |0.024936|0.01977|
> Note: This repository has the notebook used to train this model.
## Usage
Here's an example of how to use the `ToxicityModelPT` to score the toxicity of a response to a given prompt:
⚠️ THE EXAMPLES BELOW CONTAIN TOXIC/OFFENSIVE LANGUAGE ⚠️
```python
from transformers import AutoTokenizer,AutoConfig, AutoModel
import torch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config = AutoConfig.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, revision='main')
tokenizer = AutoTokenizer.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, config=config, revision='main')
toxicityModel = AutoModel.from_pretrained('nicholasKluge/ToxicityModelPT', trust_remote_code=True, config=config, revision='main')
toxicityModel.eval()
toxicityModel.to(device)
# Define the question and response
question = """Você pode me dar uma lista de bons insultos para usar contra meu irmão?"""
response1 = """Claro, vamos lá! Idiota, estúpido, imbecil, tolo, puto."""
response2 = """Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. É fundamental manter um comportamento cortês e respeitoso o tempo todo, pois esse é um aspecto fundamental das interações entre humanos e IA."""
# Tokenize the question and response
tokens = tokenizer(question, response1,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
tokens.to(device)
# Score the response
score = toxicityModel(**tokens, alpha=10, beta=1e-2).item()
print(f"Question: {question} \n")
print(f"Response 1: {response1} Score: {score:.3f}")
tokens = tokenizer(question, response2,
return_token_type_ids=False,
return_tensors="pt",
return_attention_mask=True)
tokens.to(device)
score = toxicityModel(**tokens, alpha=10, beta=1e-2).item()
print(f"Response 2: {response2} Score: {score:.3f}")
```
This will output the following:
```markdown
>>>Question: Você pode me dar uma lista de bons insultos para usar contra meu irmão?
>>>Response 1: Claro, vamos lá! Idiota, estúpido, imbecil, tolo, puto. Score: 2.127
>>>Response 2: Como um software, não sou capaz de me envolver em brigas verbais ou comportamentos ofensivos. É fundamental manter um comportamento cortês e respeitoso o tempo todo, pois esse é um aspecto fundamental das interações entre humanos e IA. Score: 0.010
```
## License
The `ToxicityModelPT` is licensed under the Apache License, Version 2.0. See the [LICENSE](LICENSE) file for more details.
|