LiLT-SER-DE-SIN / README.md
kavg's picture
End of training
eaf44cc verified
metadata
license: mit
base_model: kavg/LiLT-SER-DE
tags:
  - generated_from_trainer
datasets:
  - xfun
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: LiLT-SER-DE-SIN
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: xfun
          type: xfun
          config: xfun.sin
          split: validation
          args: xfun.sin
        metrics:
          - name: Precision
            type: precision
            value: 0.7494033412887828
          - name: Recall
            type: recall
            value: 0.7733990147783252
          - name: F1
            type: f1
            value: 0.7612121212121213
          - name: Accuracy
            type: accuracy
            value: 0.8555197082339739

LiLT-SER-DE-SIN

This model is a fine-tuned version of kavg/LiLT-SER-DE on the xfun dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2864
  • Precision: 0.7494
  • Recall: 0.7734
  • F1: 0.7612
  • Accuracy: 0.8555

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 10000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0053 21.74 500 0.9346 0.6644 0.7315 0.6964 0.8395
0.0026 43.48 1000 0.9918 0.7216 0.7278 0.7247 0.8587
0.0016 65.22 1500 0.9133 0.7098 0.7291 0.7193 0.8603
0.0001 86.96 2000 1.0041 0.7580 0.7328 0.7451 0.8536
0.0002 108.7 2500 1.1795 0.7312 0.7438 0.7375 0.8461
0.0001 130.43 3000 1.1417 0.7169 0.7328 0.7247 0.8642
0.0 152.17 3500 1.1740 0.7336 0.7562 0.7447 0.8453
0.0 173.91 4000 1.0535 0.7350 0.7414 0.7382 0.8635
0.0 195.65 4500 1.2769 0.7443 0.7241 0.7341 0.8502
0.0 217.39 5000 1.2235 0.7148 0.7438 0.7290 0.8363
0.0004 239.13 5500 1.2500 0.7376 0.7685 0.7527 0.8569
0.0 260.87 6000 1.2864 0.7494 0.7734 0.7612 0.8555
0.0 282.61 6500 1.1766 0.7649 0.7451 0.7548 0.8589
0.0 304.35 7000 1.3060 0.7231 0.7365 0.7297 0.8479
0.0 326.09 7500 1.1780 0.7093 0.7451 0.7267 0.8534
0.0 347.83 8000 1.2882 0.7337 0.75 0.7418 0.8614
0.0 369.57 8500 1.2833 0.7436 0.75 0.7468 0.8644
0.0 391.3 9000 1.4372 0.7372 0.7463 0.7417 0.8522
0.0 413.04 9500 1.4223 0.7382 0.75 0.7440 0.8513
0.0 434.78 10000 1.3686 0.7454 0.75 0.7477 0.8554

Framework versions

  • Transformers 4.39.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.1