--- license: mit base_model: kavg/LiLT-SER-DE tags: - generated_from_trainer datasets: - xfun metrics: - precision - recall - f1 - accuracy model-index: - name: LiLT-SER-DE-SIN results: - task: name: Token Classification type: token-classification dataset: name: xfun type: xfun config: xfun.sin split: validation args: xfun.sin metrics: - name: Precision type: precision value: 0.7494033412887828 - name: Recall type: recall value: 0.7733990147783252 - name: F1 type: f1 value: 0.7612121212121213 - name: Accuracy type: accuracy value: 0.8555197082339739 --- # LiLT-SER-DE-SIN This model is a fine-tuned version of [kavg/LiLT-SER-DE](https://huggingface.co/kavg/LiLT-SER-DE) on the xfun dataset. It achieves the following results on the evaluation set: - Loss: 1.2864 - Precision: 0.7494 - Recall: 0.7734 - F1: 0.7612 - Accuracy: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 10000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0053 | 21.74 | 500 | 0.9346 | 0.6644 | 0.7315 | 0.6964 | 0.8395 | | 0.0026 | 43.48 | 1000 | 0.9918 | 0.7216 | 0.7278 | 0.7247 | 0.8587 | | 0.0016 | 65.22 | 1500 | 0.9133 | 0.7098 | 0.7291 | 0.7193 | 0.8603 | | 0.0001 | 86.96 | 2000 | 1.0041 | 0.7580 | 0.7328 | 0.7451 | 0.8536 | | 0.0002 | 108.7 | 2500 | 1.1795 | 0.7312 | 0.7438 | 0.7375 | 0.8461 | | 0.0001 | 130.43 | 3000 | 1.1417 | 0.7169 | 0.7328 | 0.7247 | 0.8642 | | 0.0 | 152.17 | 3500 | 1.1740 | 0.7336 | 0.7562 | 0.7447 | 0.8453 | | 0.0 | 173.91 | 4000 | 1.0535 | 0.7350 | 0.7414 | 0.7382 | 0.8635 | | 0.0 | 195.65 | 4500 | 1.2769 | 0.7443 | 0.7241 | 0.7341 | 0.8502 | | 0.0 | 217.39 | 5000 | 1.2235 | 0.7148 | 0.7438 | 0.7290 | 0.8363 | | 0.0004 | 239.13 | 5500 | 1.2500 | 0.7376 | 0.7685 | 0.7527 | 0.8569 | | 0.0 | 260.87 | 6000 | 1.2864 | 0.7494 | 0.7734 | 0.7612 | 0.8555 | | 0.0 | 282.61 | 6500 | 1.1766 | 0.7649 | 0.7451 | 0.7548 | 0.8589 | | 0.0 | 304.35 | 7000 | 1.3060 | 0.7231 | 0.7365 | 0.7297 | 0.8479 | | 0.0 | 326.09 | 7500 | 1.1780 | 0.7093 | 0.7451 | 0.7267 | 0.8534 | | 0.0 | 347.83 | 8000 | 1.2882 | 0.7337 | 0.75 | 0.7418 | 0.8614 | | 0.0 | 369.57 | 8500 | 1.2833 | 0.7436 | 0.75 | 0.7468 | 0.8644 | | 0.0 | 391.3 | 9000 | 1.4372 | 0.7372 | 0.7463 | 0.7417 | 0.8522 | | 0.0 | 413.04 | 9500 | 1.4223 | 0.7382 | 0.75 | 0.7440 | 0.8513 | | 0.0 | 434.78 | 10000 | 1.3686 | 0.7454 | 0.75 | 0.7477 | 0.8554 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.1