|
---
|
|
license: apache-2.0
|
|
base_model: microsoft/resnet-152
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- imagefolder
|
|
metrics:
|
|
- accuracy
|
|
model-index:
|
|
- name: Dogs-Breed-Image-Classification-V2
|
|
results:
|
|
- task:
|
|
name: Image Classification
|
|
type: image-classification
|
|
dataset:
|
|
name: imagefolder
|
|
type: imagefolder
|
|
config: default
|
|
split: train
|
|
args: default
|
|
metrics:
|
|
- name: Accuracy
|
|
type: accuracy
|
|
value: 0.8408163265306122
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Dogs-Breed-Image-Classification-V2
|
|
|
|
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.0115
|
|
- Accuracy: 0.8408
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 5e-06
|
|
- train_batch_size: 32
|
|
- eval_batch_size: 32
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 20
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
|
| No log | 1.0 | 483 | 4.6525 | 0.7382 |
|
|
| 4.7329 | 2.0 | 966 | 4.3558 | 0.7298 |
|
|
| 4.5033 | 3.0 | 1449 | 3.9568 | 0.7471 |
|
|
| 4.1405 | 4.0 | 1932 | 3.5160 | 0.7782 |
|
|
| 3.7176 | 5.0 | 2415 | 3.0805 | 0.7946 |
|
|
| 3.293 | 6.0 | 2898 | 2.6907 | 0.8021 |
|
|
| 2.8898 | 7.0 | 3381 | 2.3044 | 0.8126 |
|
|
| 2.5343 | 8.0 | 3864 | 2.0091 | 0.8177 |
|
|
| 2.2188 | 9.0 | 4347 | 1.7910 | 0.8126 |
|
|
| 1.9698 | 10.0 | 4830 | 1.6015 | 0.8194 |
|
|
| 1.7532 | 11.0 | 5313 | 1.4383 | 0.8220 |
|
|
| 1.586 | 12.0 | 5796 | 1.3355 | 0.8264 |
|
|
| 1.4533 | 13.0 | 6279 | 1.2467 | 0.8260 |
|
|
| 1.336 | 14.0 | 6762 | 1.1575 | 0.8313 |
|
|
| 1.2641 | 15.0 | 7245 | 1.1038 | 0.8321 |
|
|
| 1.185 | 16.0 | 7728 | 1.0606 | 0.8395 |
|
|
| 1.1329 | 17.0 | 8211 | 1.0178 | 0.8398 |
|
|
| 1.0977 | 18.0 | 8694 | 1.0115 | 0.8408 |
|
|
| 1.0732 | 19.0 | 9177 | 0.9945 | 0.8381 |
|
|
| 1.0508 | 20.0 | 9660 | 0.9930 | 0.8393 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.37.2
|
|
- Pytorch 2.3.0
|
|
- Datasets 2.15.0
|
|
- Tokenizers 0.15.1
|
|
|