jhoppanne's picture
End of training
418133b verified
|
raw
history blame
2.98 kB
metadata
license: apache-2.0
base_model: microsoft/resnet-152
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Dogs-Breed-Image-Classification-V2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8408163265306122

Dogs-Breed-Image-Classification-V2

This model is a fine-tuned version of microsoft/resnet-152 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0115
  • Accuracy: 0.8408

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 483 4.6525 0.7382
4.7329 2.0 966 4.3558 0.7298
4.5033 3.0 1449 3.9568 0.7471
4.1405 4.0 1932 3.5160 0.7782
3.7176 5.0 2415 3.0805 0.7946
3.293 6.0 2898 2.6907 0.8021
2.8898 7.0 3381 2.3044 0.8126
2.5343 8.0 3864 2.0091 0.8177
2.2188 9.0 4347 1.7910 0.8126
1.9698 10.0 4830 1.6015 0.8194
1.7532 11.0 5313 1.4383 0.8220
1.586 12.0 5796 1.3355 0.8264
1.4533 13.0 6279 1.2467 0.8260
1.336 14.0 6762 1.1575 0.8313
1.2641 15.0 7245 1.1038 0.8321
1.185 16.0 7728 1.0606 0.8395
1.1329 17.0 8211 1.0178 0.8398
1.0977 18.0 8694 1.0115 0.8408
1.0732 19.0 9177 0.9945 0.8381
1.0508 20.0 9660 0.9930 0.8393

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.3.0
  • Datasets 2.15.0
  • Tokenizers 0.15.1