izaitova's picture
End of training
f623cc1 verified
metadata
license: apache-2.0
base_model: bert-large-cased
tags:
  - generated_from_trainer
datasets:
  - universal_dependencies
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-large-cased-upos
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: universal_dependencies
          type: universal_dependencies
          config: en_ewt
          split: validation
          args: en_ewt
        metrics:
          - name: Precision
            type: precision
            value: 0.8688031595250056
          - name: Recall
            type: recall
            value: 0.8557292884764056
          - name: F1
            type: f1
            value: 0.8617720995316154
          - name: Accuracy
            type: accuracy
            value: 0.8904395106479384

bert-large-cased-upos

This model is a fine-tuned version of bert-large-cased on the universal_dependencies dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4114
  • Precision: 0.8688
  • Recall: 0.8557
  • F1: 0.8618
  • Accuracy: 0.8904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 438 0.5774 0.8348 0.7595 0.7893 0.8099
No log 2.0 876 0.4787 0.8114 0.7967 0.8000 0.8385
No log 3.0 1314 0.4345 0.8227 0.8302 0.8213 0.8601
No log 4.0 1752 0.4140 0.8257 0.8430 0.8304 0.8727
No log 5.0 2190 0.4211 0.8405 0.8525 0.8441 0.8787
No log 6.0 2628 0.4114 0.8688 0.8557 0.8618 0.8904
No log 7.0 3066 0.4582 0.8454 0.8572 0.8503 0.8911
No log 8.0 3504 0.4771 0.8447 0.8588 0.8508 0.8894
No log 9.0 3942 0.4799 0.8545 0.8626 0.8577 0.8918
No log 10.0 4380 0.4919 0.8539 0.8642 0.8579 0.8937

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.19.1