--- license: apache-2.0 base_model: bert-large-cased tags: - generated_from_trainer datasets: - universal_dependencies metrics: - precision - recall - f1 - accuracy model-index: - name: bert-large-cased-upos results: - task: name: Token Classification type: token-classification dataset: name: universal_dependencies type: universal_dependencies config: en_ewt split: validation args: en_ewt metrics: - name: Precision type: precision value: 0.8688031595250056 - name: Recall type: recall value: 0.8557292884764056 - name: F1 type: f1 value: 0.8617720995316154 - name: Accuracy type: accuracy value: 0.8904395106479384 --- # bert-large-cased-upos This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the universal_dependencies dataset. It achieves the following results on the evaluation set: - Loss: 0.4114 - Precision: 0.8688 - Recall: 0.8557 - F1: 0.8618 - Accuracy: 0.8904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 438 | 0.5774 | 0.8348 | 0.7595 | 0.7893 | 0.8099 | | No log | 2.0 | 876 | 0.4787 | 0.8114 | 0.7967 | 0.8000 | 0.8385 | | No log | 3.0 | 1314 | 0.4345 | 0.8227 | 0.8302 | 0.8213 | 0.8601 | | No log | 4.0 | 1752 | 0.4140 | 0.8257 | 0.8430 | 0.8304 | 0.8727 | | No log | 5.0 | 2190 | 0.4211 | 0.8405 | 0.8525 | 0.8441 | 0.8787 | | No log | 6.0 | 2628 | 0.4114 | 0.8688 | 0.8557 | 0.8618 | 0.8904 | | No log | 7.0 | 3066 | 0.4582 | 0.8454 | 0.8572 | 0.8503 | 0.8911 | | No log | 8.0 | 3504 | 0.4771 | 0.8447 | 0.8588 | 0.8508 | 0.8894 | | No log | 9.0 | 3942 | 0.4799 | 0.8545 | 0.8626 | 0.8577 | 0.8918 | | No log | 10.0 | 4380 | 0.4919 | 0.8539 | 0.8642 | 0.8579 | 0.8937 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1