|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: plant-seedlings-model |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.954140127388535 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# plant-seedlings-model |
|
|
|
This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2858 |
|
- Accuracy: 0.9541 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.2496 | 1.27 | 500 | 1.2172 | 0.5637 | |
|
| 0.7542 | 2.54 | 1000 | 0.8994 | 0.6898 | |
|
| 0.6158 | 3.82 | 1500 | 0.6794 | 0.7720 | |
|
| 0.4306 | 5.09 | 2000 | 0.4715 | 0.8331 | |
|
| 0.3066 | 6.36 | 2500 | 0.4127 | 0.8567 | |
|
| 0.2851 | 7.63 | 3000 | 0.3460 | 0.8803 | |
|
| 0.3096 | 8.91 | 3500 | 0.2714 | 0.9019 | |
|
| 0.1086 | 10.18 | 4000 | 0.2760 | 0.9268 | |
|
| 0.1209 | 11.45 | 4500 | 0.2881 | 0.9229 | |
|
| 0.1036 | 12.72 | 5000 | 0.2566 | 0.9357 | |
|
| 0.0716 | 13.99 | 5500 | 0.2792 | 0.9382 | |
|
| 0.0168 | 15.27 | 6000 | 0.2604 | 0.9376 | |
|
| 0.0004 | 16.54 | 6500 | 0.3676 | 0.9363 | |
|
| 0.0017 | 17.81 | 7000 | 0.2969 | 0.9529 | |
|
| 0.0005 | 19.08 | 7500 | 0.2858 | 0.9541 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.0+cu118 |
|
- Datasets 2.11.0 |
|
- Tokenizers 0.13.3 |
|
|