--- license: apache-2.0 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: plant-seedlings-model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.954140127388535 --- # plant-seedlings-model This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2858 - Accuracy: 0.9541 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.2496 | 1.27 | 500 | 1.2172 | 0.5637 | | 0.7542 | 2.54 | 1000 | 0.8994 | 0.6898 | | 0.6158 | 3.82 | 1500 | 0.6794 | 0.7720 | | 0.4306 | 5.09 | 2000 | 0.4715 | 0.8331 | | 0.3066 | 6.36 | 2500 | 0.4127 | 0.8567 | | 0.2851 | 7.63 | 3000 | 0.3460 | 0.8803 | | 0.3096 | 8.91 | 3500 | 0.2714 | 0.9019 | | 0.1086 | 10.18 | 4000 | 0.2760 | 0.9268 | | 0.1209 | 11.45 | 4500 | 0.2881 | 0.9229 | | 0.1036 | 12.72 | 5000 | 0.2566 | 0.9357 | | 0.0716 | 13.99 | 5500 | 0.2792 | 0.9382 | | 0.0168 | 15.27 | 6000 | 0.2604 | 0.9376 | | 0.0004 | 16.54 | 6500 | 0.3676 | 0.9363 | | 0.0017 | 17.81 | 7000 | 0.2969 | 0.9529 | | 0.0005 | 19.08 | 7500 | 0.2858 | 0.9541 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3